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1 Problem

A “turnstile” antenna [1, 2] consists of a pair of linear dipole antennas oriented at 90◦ to
each other, and driven 90◦ out of phase, as shown in Fig. 1.

Figure 1: A “turnstile” antenna. From [2].

The linear antennas could be either dipoles as shown in the figure, or simply monopoles.
If a pair of loops antennas is used instead, the configuration is called an “eggbeater” antenna.

Consider the case that the length of the linear antennas is small compared to a wavelength,
so that it suffices to characterize each antenna by its electric dipole p1,2e

−iωt, where the
magnitudes p1 and p2 are equal but their phases differ by 90◦, the directions of the two
moment differs by 90◦, i.e., p1 · p2 = 0, and ω is the angular frequency.

Discuss the angular momentum of the fields of a turnstile antenna.

2 Solution

We consider a basic turnstile antenna whose component antennas lie in the x-y plane at a
common point. Then, we can write the total electric dipole moment of the antenna system
as,1

p = p0 e−iωt = p0 (x̂ + iŷ) e−iωt, (1)

1Note that x̂ = sin θ cosφ r̂ + cos θ cos φ θ̂ − sinφ φ̂ and ŷ = sin θ sinφ r̂ + cos θ sin φ θ̂ + cos φ φ̂ in a
spherical coordinate system (r, θ, φ).
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where p0 is a real constant.
In Gaussian units (and in vacuum) these fields can be written as (see, for example, sec. 9.1

of [3]),

E(r, t) =

(
k2

r
(r̂ × p0) × r̂ +

(
− ik

r2
+

1

r3

)
(3(p0 · r̂)r̂ − p0)

)
ei(kr−ωt), (2)

B(r, t) =

(
k2

r
+

ik

r2

)
r̂ × p0 ei(kr−ωt). (3)

where r̂ = r/r is the unit vector from the center of the dipole to the observer, c is the speed
of light, and k = ω/c. The time-average Poynting vector is, in spherical coordinates (r, θ, φ),

〈S〉 =
cRe(E × B�)

8π
(4)

=
ck4(1 + cos2 θ)

8πr2
r̂ − c

8π
Re

[(
2k2

r4
− ik3

r3
− ik

r5

)(
2(p0 · r̂)p�

0 + (3(p0 · r̂)(p�
0 · r̂) + 2p2

0) r̂
)]

.

The time average density of field momentum is 〈S〉 /c2, so the time-average density of field
angular momentum is,

〈l〉 = r × 〈S〉
c2

= − 1

4πc
Re

[(
2k2

r3
− ik3

r2
− ik

r4

)
(p0 · r̂)r̂ × p�

0

]
. (5)

We now restrict our attention to the far zone where the electromagnetic fields are,

B = k2 ei(kr−ωt)

r
r̂ × p0, E = B × r̂ =

k2 ei(kr−ωt

r
(p0 − (p0 · r̂) r̂), (6)

whose components in spherical coordinates are,

Er = Br = r̂ · B = 0, (7)

Eθ = Bφ = p0k
2 ei(kr−ωt)

r
cos θ(cosφ + i sinφ), (8)

Eφ = −Bθ = −p0k
2 ei(kr−ωt)

r
(sin φ − i cos φ), (9)

noting that r̂×x̂ = sinφ θ̂+cos θ cosφ φ̂, and r̂×ŷ = − cos φ θ̂+cos θ sinφ φ̂. In the plane of
the antenna, θ = 90◦, the electric field has no θ component, and hence no z component; the
turnstile radiation in the horizontal plane is horizontally polarized. In the vertical direction,
θ = 0◦ or 180◦, the radiation is circularly polarized. For intermediate angles θ the radiation
is elliptically polarized.

The magnitudes of the fields are,

E = B =
p0k

2

r

√
1 + cos2 θ, (10)

so the time-averaged radiation pattern is,

d 〈P 〉
dΩ

=
cr2

8π
B2 = r2 〈Sfar,r〉 =

cp2
0k

4

8π
(1 + cos2 θ). (11)
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The intensity of the radiation varies by a factor of 2 over the sphere. Compared to other
simple antennas, this pattern is remarkably isotropic. The radiated power is greatest for
θ = 0 or 180◦ in which directions the polarization is purely circular. The total time-average
radiated power is,

〈P 〉 =
2cp2

0k
4

3
. (12)

The time-average density of angular momentum in the far zone is,2

〈lfar〉 =
k3

4πcr2
Re [i(p0 · r̂) r̂ × p�

0] = − p2
0k

3

4πcr2
sin θ θ̂. (13)

This density flows radially outward at the speed of light, and we can speak of the rate of
radiation of angular momentum in the far zone as,

d 〈L〉
dtdΩ

= cr2 〈lfar〉 = −cp2
0k

3

4π
sin θ θ̂ =

cp2
0k

3

4π
(sin2 θ ẑ − sin θ cos θ ρ̂), (14)

where ρ̂ is the radial unit vector in cylindrical coordinates (ρ, φ, z). Integrating over solid
angle, we find that,

d 〈L〉
dt

=
2cp2

0k
3

3
ẑ =

〈P 〉
ω

ẑ, (15)

which seems consistent with the notion that photons have angular momentum J = � = U/ω.

2.1 Orbital and Spin Angular Momentum

The formalism that l = r×S/c2 implies that the density (and flow) of angular momentum has
no radial component. However, we say that the fields along the z-axis are circularly polarized
(and elliptically polarized in general). This suggests that there should be a description in
which we can identify an angular momentum with a radial component for the fields along
the z-axis.

A decomposition has been given in [4, 5] whereby the total field angular momentum can
be written in three terms,∫

l dVol =
∑

i

lcanonical, i +

∫
lEM,orbital dVol +

∫
lEM,spin dVol, (16)

lcanonical, i = r × pcanonical, i , lEM,orbital = r× pEM,orbital, lEM,spin =
Erot × Arot

4πc
, (17)

and,3
pEM,orbital =

∑3
j=1 Erot, j∇Arot, j

4πc
, (18)

where Arot is the (gauge-invariant) rotational part of the (gauge-dependent) vector potential
A. That is, Arot is the vector potential in the Coulomb gauge.

2If the dipole moment p0 were purely real, as for a small linear antenna, no angular momentum would
be radiated.

3The canonical momentum pcanonical, i is nonzero only at the positions of charges ei, and does not
contribute to angular momentum in the far zone.
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The electric field is related to the Coulomb-gauge potentials by,

E = −∇V (C) − 1

c

∂A(C)

∂t
= −∇V (C) − 1

c

∂Arot

∂t
≈ ikArot = Erot, (19)

where the approximation hold in the far zone, noting that −∇V (C) is the instantaneous
electric dipole field, which falls off as 1/r3. Then, in the far zone we have that the time-
average spin-angular-momentum density, according to eq. (17), is,

〈lEM,spin〉 =
Re(Erot × A�

rot)

8πc
=

Re(iE × E�)

8πck
= −Im(E× E�)

8πck

=
−p2

0k
3

8πcr2
Im [((r̂ × p0) × r̂) × ((r̂ × p�

0) × r̂)]

=
−p2

0k
3

8πcr2
Im [(p0 − (p0 · r̂) r̂) × (p�

0 − (p�
0 · r̂) r̂)]

=
−p2

0k
3

8πcr2
Im [p0 × p�

0 − 2iIm[(p0 · r̂) r̂ × p�
0]] =

p2
0k

3

4πcr2
(ẑ + sin θ θ̂)

=
p2

0k
3

4πcr2
cos θ r̂, (20)

noting that ẑ = cos θ r−sin θ θ̂. This is an appealing result, in that the spin angular momen-
tum is full strength along the z-axis and vanishing in the x-y plane where the polarization
is linear.

The time-average orbital-angular-momentum density in the far zone is, according to
eqs. (17)-(18),

〈lEM,orbital〉 = r × 〈pEM,orbital〉 = r ×
Re

(∑3
j=1 Erot, j∇A�

rot, j

)
8πc

. (21)

We expect that this angular momentum density to vary as 1/r2, so we must evaluate
〈pEM,orbital〉 to order 1/r3, which requires keeping terms in E and Arot to order 1/r2.

However, neither 〈lfar〉 of eq. (13) nor 〈lEM,orbital〉 has a radial component, so that 〈lEM,spin〉+
〈lEM,orbital〉 does not equal 〈lfar〉.

That is, while the notion of a classical “spin” angular momentum is appealing as a
precursor to a quantum analysis, it is not fully consistent in a classical-only view.
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