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1 Problem

A spinning sphere at rest has zero total momentum. Deduce the mass/energy and the
momentum of the spinning sphere as observed in an inertial frame where the sphere has
velocity v perpendicular to its axis of rotation, taking “relativistic” effects into account.
Give results accurate to order 1/c2 where c is the speed of light in vacuum.

Also deduce the location of the center of mass/energy of the moving, spinning sphere.
Does the moving sphere have “hidden” momentum [1]?

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, U is its total
energy, c is the speed of light in vacuum, xcm is its center of mass/energy, vcm = dxcm/dt,
p is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, vb is the
velocity (field) of its boundary, and,

fμ =
∂T μν

∂xν
, (2)

is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.1

2 Solution

2.1 Mass and Momentum

In its rest frame the sphere has mass M0 and is not spinning.
In the lab frame of the observer the geometric center (centroid) of the sphere has velocity

v0 = v0 x.
Taking the sphere to be centered on the origin in the frame in which its center is at rest

and the sphere is spinning (the � frame2), a volume element (with rest mass dM0) about
r� = (x�, y�, z�) has velocity,

u� = ω × r� = (−ωy�, ωx�, 0), (3)

1As discussed in sec. 3 of [1], we do not advocate replacing vcm by vcentroid = v0 in definition (1), where
the centroid is the geometric center of the sphere in the lab frame.

2The � frame is obtained from the lab frame by a Lorentz transformation with velocity −v0. The rest
frame of the sphere differs from the � frame by a rotation about the ω-axis.
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defining ω = ω ẑ to be the angular velocity of the sphere in the � frame, where ωa is small
compared to the speed of sound inside the sphere. In the lab frame this element has velocity,

u =
v0 + u�

‖ + u�
⊥/γ0

1 + v0 · u�/c2
=

(v0 − ωy�) x̂ + ωx� ŷ/γ0

1 − ωv0y�/c2
, where γ0 =

1√
1 − v2

0/c
2

. (4)

The relativistic mass dM (= energy/c2) of the volume element in the lab frame is given
by,

dM = γudM0 =
dM0√

1 − u2/c2
≈ dM0

(
1 +

u2

2c2

)
≈ dM0

(
1 +

v2
0 − 2ωv0y

� + ω2(x�2 + y�2)

2c2

)
, (5)

keeps terms only to order 1/c2. Hence,

M =

∫
dM ≈ M0

(
1 +

v2
0

2c2
+

kω2a2

2c2

)
, (6)

recalling that the moment of inertia of the sphere in its rest frame is I0 =
∫

(x�2 +y�2) dM0 =
kM2

0 a2 with k = 2/5. Note that the relativistic mass M in the lab frame does not equal
γ0M0 ≈ M0(1 + v2

0/2c
2) as holds for a nonspinning sphere.3

The x-component of the momentum of the sphere in the lab frame is,

Px =

∫
ux dM ≈

∫
(v0 − ωy�)

(
1 +

ωv0y
�

c2

)
dM0

(
1 +

v2
0 − 2ωv0y

� + ω2(x�2 + y�2)

2c2

)

≈ M0v0

(
1 +

v2
0

2c2
+

kω2a2

2c2

)
= Mv0. (7)

That is, the lab-frame momentum is related by,

P = Mv0 = Mvcm, (8)

noting that the center of mass/energy of the sphere has velocity v0 in the lab frame (as
can be confirmed using eq. (11) below). As such, the momentum in the lab frame is not
“hidden”.

This last statement is consistent with the definition (1) in that the boundary of the
(sub) system can be taken outside the sphere, so that the boundary integral vanishes and
Phidden = 0.

Also, for a system in isolation, such as the present example, the 4-divergence of the stress
tensor is zero, so that f0 = 0 in particular. Thus, Phidden = 0 according to the second form
of eq. (1) as well.4

3The mass M� of the spinning sphere whose center is at rest in the � frame follows from eq. (6) with
v0 = 0.

4A basic consequence of the definition (1) is that an isolated system can have no “hidden” momentum,
so it should not be a surprise that Phidden = 0 in the present example.
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2.2 Location of the Center of Mass/Energy (First Analysis)

The position xcm of the sphere in the lab frame is given by,

Mxcm =

∫
x dM ≈

∫
(x x̂ + y ŷ + z ẑ) dM0

(
1 +

v2
0 − 2ωv0y

� + ω2(x�2 + y�2)

2c2

)

≈
∫ [

(x� + v0t)

(
1 − v2

0

2c2

)
x̂ + y� ŷ + z� ẑ

]
dM0

(
1 +

v2
0 − 2ωv0y

� + ω2(x�2 + y�2)

2c2

)

≈ Mv0t x̂ − v0kMa2ω

2c2
ŷ ≈ Mx0 − S0 × v0

2c2
, (9)

where x0 = v0t = v0t x̂ is the geometric center of the moving sphere in the lab frame,
S0 = I0 ω = kM0a

2 ω is the (spin) angular momentum of the sphere about its geometric
center, and the moment of inertia I0 is,

I0 =

∫
[(x− v0t)

2 + y2] dM

≈
∫ [

x�2

(
1 − v2

0

c2

)
+ y�2

]
dM0

(
1 +

v2
0 − 2ωv0y

� + ω2(x�2 + y�2)

2c2

)

≈ 2M0a
2

5

(
1 +

25ω2a2

112c2

)
≈ kMa2. (10)

To order 1/c2,

xcm ≈ x0 − ka2ω × v0

2c2
≈ x0 − S0 × v0

2Mc2
. (11)

The center of mass/energy of the moving sphere is not at its geometric center x0, but
is shifted to the side of the sphere that has the higher speed in the lab frame, as the rela-
tivistic mass is higher there. The spinning, translating sphere (or better, Lorentz-contracted
spheroid) cannot be described as a rigid body, in that the center of mass/energy does not
rotate with the matter of the spheroid.

The above analysis did not take into account that the rolling hoop has internal forces/stresses,
In the lab frame these stresses are largest near the top of the hoop, where the speed is the
greatest. Since there is mass/energy associated with the internal stresses, it seems likely
that the position of the center of mass/energy is even higher above the centroid, x0 = vt,
than indicated in eq. (11).

We pursue this additional upward shift in the following section.
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2.3 A More General Argument

This section follows [2]. See also [3, 4, 5], sec. 64 of [6]5 and [7, 8, 9]. This topic has an
extensive history in considerations of the quantum position operator. For a review, see [10].

The mechanical behavior of a macroscopic subsystem can be described with the aid of
its (symmetric) stress-energy-momentum 4-tensor T μν. The quantity,

P μ = (U/c, P i) = (U/c,P) =

∫
T 0μ

c
dVol. (12)

describes the total energy and momentum of the subsystem, although P μ is not truly a
4-vector unless the subsystem is isolated.6

The total mass/energy of the subsystem is,

U =

∫
T 00 dVol, (13)

and we define the effective mass of the subsystem as,

M =
U

c2
=

∫
T 00

c2
dVol =

∫
ρ dVol, (14)

where we define the effective mass density of the subsystem to be ρ = T 00/c2. The center of
mass/energy of the subsystem is at position,

xμ
cm =

1

U

∫
T 00xμ dVol, xcm =

1

M

∫
T 00

c2
x dVol. (15)

where xμ = (ct,x), as characterizing the coordinates of the center of mass/energy of the
subsystem.

In general, the lab-frame quantity xμ
cm is not a 4-vector, and it is not the Lorentz trans-

formation xμ
0 of the quantity,

x�μ
0 ≡ x�μ

cm =
1

U�

∫
T �00x�μ dVol�, (16)

where the � frame is the (instantaneous) frame of the subsystem in which its total 3-
momentum is zero (but where the angular velocity is still ω),

0 = P �i =

∫
T �0i

c
dVol�. (17)

We denote the lab-frame transform of the quantity x�μ
0 as xμ

0 , which we will call the centroid.7

Note that x0
0 = ct = x0

cm. The velocity of the boost from the � frame to the lab frame is

5In thermodynamics a closed subsystem can have exchange of energy, but not matter, with other sub-
system, whereas an isolated subsystem has no exchange of mass/energy. The term closed system in [2, 6]
corresponds to the term isolated system of thermodynamics.

6In case of a nonisolated system, P μ of eq. (12) has been called a “false” 4-vector [11].
7The coordinates xμ

0 are called those of the proper center of mass in [6].
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vcm of eq. (35). Hence, the velocity v0 of the centroid is the same as the velocity vcm of the
center of mass/energy, even though the position x0 is not necessarily that same as xcm.

As seen in sec. 2.2 the difference between xcm and x0 in the lab frame is related to the
presence of angular momentum in the subsystem, so we introduce the quantity,

Lμν =

∫
xμT 0ν − xνT 0μ

c
dVol, (18)

as the (antisymmetric) angular momentum 4-tensor of the subsystem. Further, we introduce
the “spin” angular momentum tensors, defined by,

Sμν
0 = Lμν − (xμ

0P
ν − xν

0P
μ), (19)

and,
Sμν

cm = Lμν − (xμ
cmP ν − xν

cmP μ), (20)

which subtract away the angular momentum associated with the energy/momentum of the
centroid, and of the center of mass/energy, respectively.

For an antisymmetric 4-tensor Aμν we construct two 3-vectors a and ã and according to,

a = (a23, a31, a12) and ã = (a10, a20, a30). (21)

Then, for either of the spin 4-tensors (19)-(20) we can write,

S = L− x × P, S̃ = L̃ − Mcx + ctP, and so x =
1

Mc

(
L̃ − S̃ + ctP

)
, (22)

where from eqs. (18),

L =

∫
x × p dVol, and L̃ = Mcxcm − ctP. (23)

In particular, from eqs. (19) and (22)-(23) we obtain an expression for the lab-frame 3-
position of the centroid,8

x0 = xcm − S̃0

Mc
. (24)

This result was deduced in the lab frame, but it also holds in the � frame, where x�
0 = x�

cm,
so it must be that S̃�

0 = 0. Then, since P� = 0, we have that,

S�μν
0 P �

ν = 0. (25)

IF Sμν
0 and P μ are a 4-tensor and a 4-vector, respectively, with respect to Lorentz trans-

formations, then in the lab frame we have that9

0 = Sμν
0 Pν , S̃0 · P = 0 for μ = 0, Mc S̃0 = −S0 × P, for μ = 1, 2, 3, (27)

8Using eq. (20) rather than (19) leads only to S̃cm = 0, which also follows directly from eq. (20).
9In the � frame, x�μ

0 = x�μ
cm, so we also have that the spin tensors are the same in this frame, S�μν

0 = S�μν
cm ,

and in particular S̃�
0 = S̃�

cm = 0. Since P� = 0, we have that S�μν
cm P �

ν = 0. If Sμν
cm were a 4-tensor with

respect to Lorentz transformations, then in the lab frame we would have that,

0 = Sμν
cmPν, S̃cm · P = 0 for µ = 0, Mc S̃cm = −Scm × P, for µ = 1, 2, 3. (26)

This contradicts the fact that S̃cm = 0, so we infer that Sμν
cm is not a tensor under Lorentz transformations.
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and,

x0 = xcm − S0 × P

M2c2
= xcm − S0 × v0

Mc2
. (28)

as in eq. (11), but now the term in S is twice as large.10,11

2.3.1 How General is the “General” Argument?

The above argument may not hold for a subsystem that is not isolated from the rest of the
Universe, as was tacitly assumed above in eq. (27), and in writing P = Mv0.

As discussed in sec. 3 of [1], we can deduce a relation (35) between P and Mv0 for a
nonisolated subsystem. The reader may wish to skip ahead to that point.

In detail, from eq. (14) we find,

dM

dt
=

∫
∂0T

00

c
dVol +

∮
boundary

T 00

c2
(vb · dArea), (29)

and,

d

dt
(Mxcm) =

dM

dt
xcm + M

dxcm

dt
=

∫
∂0T

00

c
x dVol +

∮
boundary

T 00

c2
x (vb · dArea), (30)

where xμ = (ct,x), ∂μ = ∂/∂xμ = (∂/∂ct, ∇), and vb is the velocity (field) of the boundary.
Hence,

Mvcm = M
dxcm

dt
=

∫
∂0T

00

c
(x − xcm) dVol +

∮
boundary

T 00

c2
(x − xcm) (vb · dArea)

=

∫
∂0T

00

c
(x − xcm) dVol +

∮
boundary

(x − xcm) (ρvb · dArea). (31)

While the stress-energy-momentum tensor for an isolated system has zero 4-divergence,
this is not necessarily the case for the subsystem under consideration. Rather, the possibly
nonzero 4-vector,

fμ = ∂νT
νμ = ∂νT

μν , (32)

describes the 4-force density exerted by the subsystem on the rest of the system. If the
stress-energy-momentum tensor is nonzero just inside the boundary, the 4-force density can
have delta-function contributions on the boundary (as T μν is defined to be zero outside the
boundary), which must be considered carefully in the following. Of course, fμ is zero outside
the boundary of the subsystem.

Using eq. (32) we can write,

∂0T
00 = f0 − ∂jT

0j, (33)

10In [5] it is shown that S0 · P = Scm · P = L · P and that x0 = xcm + Scm × P/M2
0 c2 (with the + sign

miswritten as a −).
11The result (28) appears in eq. (8) of [12], with v0 taken to be the velocity of the observer relative to

the sphere, i.e., −v0 of this note. This result was also discussed around eq. (7) of [13], with the claim that
x0 rather than xcm is the “true” center of mass.
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where both f0 and ∂jT
0j can have delta functions on the boundary. Then, noting that the

momentum density p has components pj = T 0j/c, the volume integral in eq. (31) can be
written as, ∫

∂0T
00

c
(x − xcm) dVol =

∫
f0

c
(x − xcm) dVol −

∫
∂jT

0j

c
(x− xcm) dVol

=

∫
f0

c
(x− xcm) dVol −

∫
∂j[T

0j(x − xcm)]

c
dVol +

∫
T 0j ∂jx

c
dVol

=

∫
f0

c
(x− xcm) dVol −

∮
boundary

T 0j(x− xcm)

c
dAreaj +

∫
p dVol

=

∫
f0

c
(x− xcm) dVol −

∮
boundary

(x − xcm) (p · dArea) + P. (34)

Combining eqs. (31) and (34), we have,

vcm =
P

M
− 1

M

∮
boundary

(x− xcm) (p− ρvb) · dArea +
1

M

∫
f0

c
(x − xcm) dVol. (35)

The integrals vanish for an isolated subsystem, in which case vcm = P/M , as expected.
The integrals in eq. (35) can be zero even for subsystems that are not isolated. For

example, if the subsystems occupy disjoint spatial volumes the integrals are zero. This holds
for any reasonable choice of subsystems of an all-mechanical system, as considered in [14].
The volume integral can be nonzero only if the subsystems are both fields, or matter and
fields, which occupy that same spatial volume.

We now restrict our discussion to examples in which the integrals are zero, so vcm = P/M ,
and in addition the total mass and energy, M and U , of the subsystem are constant in time.
In this case, the magnitude of the momentum P, and P μPμ = Mc2, are is also constant in
time. Furthermore we suppose that the angular momentum tensor Lμν is constant in time,
as holds for each of two subsystems that interact via a central force.

We still face the issue of whether relation (27) holds in the lab frame of a nonisolated
subsystem.
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