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1 Problem

The dynamics of insect flight is remarkably complex (see, for example, [1, 2]). Consider here
the possibly simpler problem of the stabilization of the hovering and steady flight of some
insects, which appears to be based on detection of an undesirable angular velocity Ω via the
associated Coriolis force on vibrating antennae [3] or on vestigial wings called halteres [4].
See also [5, 6].

The antennae or halteres vibrate at the same angular frequency ω as do the insect’s
wings. The articulation of the antennae and halteres appears to involve rotations about two
orthogonal axes that we label 1̂′ and 2̂, for which an equivalent mechanical linkage is sketched
below [4]. The insects have sensors that report the time dependence of the force/torque at
the joints of the antennae or halteres.
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The flight of the insect should be stable against roll, pitch and yaw with respect to a
coordinate system (R̂, P̂, Ŷ) defined by the body of the insect, as sketched below for an insect
with antenna-based stabilization (from [3]). The insect’s sensors report force components
F1, F2 and F3 on the antenna or haltere with respect to the body axes (1̂, 2̂, 3̂) defined by
the quiescent orientation of the antenna or halter and its joints.

The body axes (R̂, P̂, Ŷ) and (1̂, 2̂, 3̂) rotate with angular velocity Ω with respect to the
inertial lab frame. In the latter frame the antenna or haltere experiences a force F0 due to
gravity, air resistance, and the muscles that cause the vibration. For hovering or flight with
a steady velocity, the force F on the antenna or haltere, whose mass is m, in the rotating
body frame can be written as,

F = F0 + m r × Ω̇ + mΩ× (r × Ω) + 2mv × Ω, (1)

where r is the position of the center of mass of the antenna or haltere and v is its velocity
(with respect to the rotating frame).

For nearly stabilized flight the rate of change Ω̇ of angular velocity is small, and the
coordinate force m r× Ω̇ can be neglected.

Then, the centrifugal force term mΩ× (r×Ω) is nearly constant, and is not prominent
compared to the low-frequency components of the force F0. Hence, the centrifugal force
provides no useful measure of the destabilizing rotation Ω.

Nature is left with the challenge of utilizing the Coriolis force term 2mv ×Ω to provide
a measure of the undesirable rotation Ω.

By vibrating its antennae or halteres at the wing frequency ω � Ω, the insect renders
the Coriolis force distinct from the low-frequency components of F0. However, for a velocity
of the form v = v0 cosωt, the acceleration has magnitude a = ωv0 and the force F0 must
include a component with frequency ω whose magnitude is at least mv0ω � mv0Ω. That
is, the component of the Coriolis force 2mv × Ω at frequency ω is small compared to the
component of the drive force at the same frequency. Hence, it is not obvious that the Coriolis
force can provide a suitable signal for the insect to stabilize its flight against the rotation Ω.

Show that the model for the articulation of the antennae and halteres given on p. 1
implies that the Coriolis force includes small components at integer multiples of the wing
frequency ω, which permits separate determination of the components (Ω1, Ω2, Ω3) of the
destabilizing angular velocity Ω.
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Details of the use of this information to control the flight is beyond the scope of this
problem. Some discussion of this issue is given in [5].

2 Solution

Technical details of a solution are presented in secs. 2.1-2.6, and a summary is given in
sec. 2.7.

2.1 Fourier Series Description of the Angles of the Antenna/Haltere

We consider the antenna or haltere to be a massless rod of length r with mass m concentrated
at its free end, and with its pivoted end at the origin of the (1̂, 2̂, 3̂) body frame, as shown
in the figure below.

The pivot of the rod is double jointed so that the rod can rotate about both the 1̂′ and
the 2̂ axes. The 1̂′ axis makes angle θ1 with respect to the 1̂ axis in the 1̂-3̂ plane as it
rotates about the 2̂ axis, and the rod makes angle θ2 with respect to the 1̂-3̂ plane as it
rotates about the 1̂′ axis.

The position of mass m is therefore,

r = r sin θ1 cos θ2 1̂ + r sin θ2 2̂ + r cos θ1 cos θ2 3̂. (2)

The muscles of the insect drive the rod at the wing frequency ω so that the time depen-
dence of angles θ1 and θ2 can be represented by Fourier series as,

θ1 =
∞∑

m=1

θ1m sin(mωt + φ1m), θ2 =
∞∑

n=1

θ2n sin(nωt + φ2n), (3)

since by definition the average values of θ1 and θ2 are zero. All of the Fourier coefficients θij

are small, and all except θ11 and θ21 are very small. A difference between the phase factors
φ11 and φ21 corresponds to an elliptical orbit of mass m.
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2.2 A Possible Condition on the Fourier Series

Since muscles only pull, and with a roughly constant force, it may be that the driving force
on the antenna or haltere is better approximated by a square wave than by a sine wave. In
this case, the Fourier expansion of the driving force would have the form,

F =
4F0

π

(
sinωt +

1

3
sin 3ωt +

1

5
sin 5ωt + ...

)
. (4)

If drag forces are small, we can integrate eq. (4) twice to infer that the time-dependence of
the angles θ1 and θ2 would be of the form,

θi =
4θi0

π

(
sinωt +

1

27
sin 3ωt +

1

125
sin 5ωt + ...

)
. (5)

It will prove desirable that the Fourier series for the angles θi have only odd frequency
components. A general condition that this be so is that the waveforms θi(t) in their second
half period are the negative of those for the first half period,

θi(t + T/2) = −θi(t), (6)

where T = 2π/ω.
This condition appears to be met for the wing velocities in the model of insect flight of

[1].

2.3 Fourier Series for the Velocity

Returning to the general forms of eq. (3), the time derivatives of angles θ1 and θ2 are,

θ̇1 = ω
∞∑

m=1

mθ1m cos(mωt + φ1m), θ̇2 = ω
∞∑

n=1

nθ2n cos(nωt + φ2n). (7)

The velocity of mass m respect to the body frame is the time derivative of eq. (2),

v = ṙ

= r(θ̇1 cos θ1 cos θ2 − θ̇2 sin θ1 sin θ2) 1̂ + rθ̇2 cos θ2 2̂ − r(θ̇1 sin θ1 cos θ2 + θ̇2 cos θ1 sin θ2) 3̂

= ωr

[ ∞∑
k=1

kθ1k cos(kωt + φ1k) cos

( ∞∑
m=1

θ1m sin(mωt + φ1m)

)
cos

( ∞∑
n=1

θ2n sin(nωt + φ2n)

)

−
∞∑

k=1

kθ2k cos(kωt + φ2k) sin

( ∞∑
m=1

θ1m sin(mωt + φ1m)

)
sin

( ∞∑
n=1

θ2n sin(nωt + φ2n)

)]
1̂

+ωr
∞∑

k=1

kθ2k cos(kωt + φ2k) cos

( ∞∑
m=1

θ2m sin(mωt + φ2m)

)
2̂ (8)

−ωr

[ ∞∑
k=1

kθ1k cos(kωt + φ1k) sin

( ∞∑
m=1

θ1m sin(mωt + φ1m)

)
cos

( ∞∑
n=1

θ2n sin(nωt + φ2n)

)

+
∞∑

k=1

kθ2k cos(kωt + φ2k) cos

( ∞∑
m=1

θ1m sin(mωt + φ1m)

)
sin

( ∞∑
n=1

θ2n sin(nωt + φ2n)

)]
3̂.
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We now recast eq. (8) as a single Fourier series,

v =
∞∑

n=1

vnω, (9)

where vnω contains only terms of frequency nω. We keep terms only to third order of
smallness, i.e., terms with coefficients such as θ3

11, θ11θ12 or θ31. The terms in frequency ω
are, to third order,

vω = ωr

{
θ11 cos(ωt + φ11) −

θ11θ
2
21

8
[cos(ωt− φ11 + 2φ21) − 2 cos(ωt + φ11)] −

θ3
11

8
cos(ωt + φ11)

}
1̂

+ωr

(
θ21 +

θ3
21

8

)
cos(ωt + φ21) 2̂

−ωr

2
[θ11θ12 cos(ωt + φ11 − φ12) + θ21θ22 cos(ωt + φ21 − φ22)] 3̂. (10)

The first-order terms in frequency ω are,

vω = ωrθ11 cos(ωt + φ11) 1̂ + ωrθ21 cos(ωt + φ21) 2̂. (11)

The terms in frequency 2ω are of second (or higher than third) order,

v2ω = 2ωrθ12 cos(2ωt + φ12) 1̂ + 2ωrθ22 cos(2ωt + φ22) 2̂

−ωr

2
[θ2

11 sin(2ωt + 2φ11) + θ2
21 sin(2ωt + 2φ21)] 3̂. (12)

The terms in frequency 3ω are of third (or higher) order,

v3ω = ωr

[
3θ13 cos(3ωt + φ13) +

3θ11θ
2
21

8
cos(3ωt + φ11 + 2φ21) +

θ3
11

8
cos(3ωt + 3φ11)

]
1̂

+ωr

[
3θ23 cos(3ωt + φ23) +

θ3
21

8
cos(3ωt + 3φ21)

]
2̂

−5ωr

2
[θ11θ12 sin(3ωt + φ11 + φ12) + θ21θ22 sin(3ωt + φ21 + φ22)] 3̂. (13)

2.4 The Forces at Frequency ω

The Coriolis force FC on the antenna or haltere with respect to the (1̂, 2̂, 3̂) axes is,

FC = 2mv × Ω

= 2m(v2Ω3 − v3Ω2) 1̂ + 2m(v3Ω1 − v1Ω3) 2̂ + 2m(v1Ω2 − v2Ω1) 3̂. (14)

Using eqs. (11) we obtain the components of the Coriolis force at frequency ω,

FC,ω = 2mrωΩ3θ21 cos(ωt + φ21) 1̂ − 2mrωΩ3θ11 cos(ωt + φ11) 2̂

+2mrω[Ω2θ11 cos(ωt + φ11) − Ω1θ21 cos(ωt + φ21)] 3̂. (15)

Can this force be distinguished from the much larger drive force?
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If, as considered above, any drag forces are also small compared to the drive force FD,
then the latter is given to a good approximation by,

FD = mr̈ = mv̇

= mr[θ̈1 cos θ1 cos θ2 − θ̈2 sin θ1 sin θ2 − (θ̇
2

1 + θ̇
2

2) sin θ1 cos θ2 − θ̇1θ̇2 cos θ1 sin θ2] 1̂

+mr[θ̈2 cos θ1 − θ̇
2

2 cos θ2 sin θ2] 2̂ (16)

−mr[θ̈1 sin θ1 cos θ2 + θ̈2 cos θ1 sin θ2 + (θ̇
2

1 + θ̇
2

2) cos θ1 cos θ2 − θ̇1θ̇2 sin θ1 sin θ2] 3̂,

recalling eq. (10). The component of the drive force at frequency ω is (to lowest order),

FD,ω = −mrω2θ11 sin(ωt + φ11) 1̂ − mrω2θ21 sin(ωt + φ21) 2̂. (17)

If φ11 = φ21 the 1̂ and 2̂ components of the Coriolis force (15) are 90◦ out of phase with the
corresponding components of the drive force (17), and phase-sensitive force sensors could
make useful measurements of the Coriolis force on the antenna or haltere as frequency ω.

We infer that in fact the phases in the series (3) are all identical, and we set them to zero
henceforth. Then, the component of the drive force at frequency ω is,

FD,ω = −mrω2(θ11 1̂ + θ21 2̂) sinωt, (18)

and the component of the Coriolis force at frequency ω is,

FC,ω = 2mrω[Ω3(θ21 1̂ − θ11 2̂) + (Ω2θ11 − Ω1θ21) 3̂] cosωt. (19)

The ratio of the Coriolis force to the drive force at frequency ω is roughly 2Ω3/ω.
Phase-sensitive force sensors responsive to the Coriolis force at frequency ω along either

the 1̂ or 2̂ axes would suffice to detect a nonzero rotation component Ω3. Sensors responsive
to forces along the 3̂ axis at frequency ω could detect a particular combination of components
Ω1 and Ω2, but they could not resolve these components separately.1

2.5 The Forces at Frequency 2ω

Additional information as to the components of the destabilizing angular velocity Ω are
obtained from consideration of the Coriolis force at frequency 2ω (henceforth assuming that
all phases φij = 0). Combining eqs. (12) and (14), we find,

FC,2ω = 2mrω

[
2Ω3θ22 cos 2ωt − Ω2

2
(θ2

11 + θ2
21) sin 2ωt

]
1̂

−2mrω

[
2Ω3θ12 cos 2ωt− Ω1

2
(θ2

11 + θ2
21) sin 2ωt

]
2̂

+4mrω [θ12Ω2 − θ22Ω1] cos 2ωt 3̂, (20)

1Sensors along, say, only axes 1̂ and 3̂ together with drive motion only along axis 2̂ would suffice to
determine components Ω1 and Ω3.
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If the angular waveforms θi(t) obey the condition (6), then θ12 = θ22 = 0, and the Coriolis
force at frequency 2ω takes on the desirable form,

FC,2ω = 2mrω(θ2
11 + θ2

21)(−Ω2 1̂ + Ω1 2̂) sin 2ωt. (21)

In this case, force sensors along only the 1̂ and 2̂ axes that are responsive to frequencies ω
and 2ω can separately determine components Ω1, Ω2 and Ω3 of the destabilizing rotation Ω.
For this, only one of the two vibrations θ1(t) or θ2(t) need be nonzero.

The component of the drive force (16) at frequency 2ω is, supposing that condition (6)
holds,

FD,2ω = −mrω2

2
(θ2

11 + θ2
21) cos 2ωt 3̂, (22)

which has no component along either the 1̂ or 2̂ axes. Hence, it is very favorable that the
force sensors are responsive to frequency 2ω.

2.6 The Forces at Frequency 3ω

While it appears sufficient to determine the destabilizing angular velocity Ω via sensors
operating at frequencies ω and 2ω, we explore the merits of operation of the sensors at
frequency 3ω as well. We restrict the discussion to the case that all phases φij are zero, and
the only odd harmonics of frequency ω are present in the Fourier expansions of angles θ1(t)
and θ2(t) according to condition (6).

Combining eqs. (13) and (14), we find,

FC,3ω = 2mrωΩ3

[
3θ23 +

θ3
21

8

]
cos 3ωt 1̂

−2mrωΩ3

[
3θ13 +

3θ1
11θ21

8
+

θ3
11

8

]
cos 3ωt 2̂

+2mrω

{
Ω2

[
3θ13 +

3θ1
11θ21

8
+

θ3
11

8

]
− Ω1

[
3θ23 +

θ3
21

8

]}
cos 3ωt 3̂. (23)

This form is very similar to that of the forces (15) at frequency ω.
The components of the drive force (16) at frequency 3ω are,

FD,3ω = −mrω2

8
(3θ3

11 + 5θ11θ
2
21) sin 3ωt 1̂ − 3mrω2

8
θ3

21 sin 3ωt 2̂, (24)

such that the drive force is 90◦ out of phase with the Coriolis force (23) at this frequency.
The angular velocity component Ω3 could be determined by phase-sensitive sensors along

either or both of body axes 1̂ and 2̂ at either or both frequencies ω and 3ω. It may be that
the signal-to-noise ratio is better at frequency 3ω than ω.

Sane et al. [3] report that θ11 ≈ θ21 ≈ 0.02 rad for the antennae of the hawk moth
Manduca sexta. In the approximation of eq. (5), θi3 = θi1/27. Then, the ratio of the Coriolis
force to the drive force along axis 2̂ at frequency 3ω would be roughly 1500Ω3/ω, which is
far superior to that at frequency ω.
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If the Coriolis signal is large compared to the drive force at frequency 3ω, then the force
sensors need not be phase sensitive.

Sane et al. also report that the force sensors of the antennae of the hawk moth operate
primarily at frequencies 2ω and 3ω, as seems well justified by the present analysis.

2.7 Summary

• All three components (Ω1, Ω2, Ω3) of the destabilizing angular velocity Ω can be de-
termined by sensors of transverse forces at the bases of the antennae or halteres. No
detection of the longitudinal force (along axis 3̂) is needed.

• Only one antennae or haltere suffices for this determination. The usual conformation
with pairs of antennae or halteres provides redundancy, rather than an essential aspect
of the measurement.

• It is very advantageous if the vibrational waveforms of the antennae or halteres satisfy
condition (6), so that only odd harmonics appear in the Fourier expansions of these
waveforms. The force waveform nonetheless contains all integer harmonics.

• Components Ω1 and Ω2 (in the body frame defined by the antenna or haltere) are
determined by the forces detected at frequency 2ω.

• The component Ω3 could be determined from the forces detected at either frequency ω
or 3ω, but the signal to noise is much superior at frequency 3ω in which case the force
sensors may not need to be phase sensitive.

• It suffices that the antenna or haltere vibrate only in a single transverse plane. That
is, the antennae or haltere need not possess the double articulation sketched on p. 1.
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