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1 Problem

A steady current in a circular loop presumably involves a large number of electrons in uniform
circular motion. Each electron undergoes accelerated motion, and individual accelerated
charges emit radiation. Yet, the current density J is independent of time in the limit of a
continuous current distribution, and therefore does not radiate. How can we reconcile these
two views?

1.1 Comments and Hints

If the steady current were a continuous DC current, all of its multipole moments would be
constant, and we would expect no radiation.1

For a current consisting of electrons, it must be that the radiation is canceled by destruc-
tive interference between the radiation fields of the large number N of electrons that make
up the steady current.

A single electron in uniform circular motion emits electric dipole radiation, whose power
is proportional to the square of the acceleration a = v2/r, and hence to (v/c)4. But, the
electric dipole moment vanishes for two electrons in uniform circular motion at opposite ends
of a common diameter; quadrupole radiation is the highest multipole in this case, with power
proportional to (v/c)6. It is suggestive that in case of 3 electrons 120◦ apart in uniform cir-
cular motion the (time-dependent) quadrupole moment vanishes, and the highest multipole
radiation is octupole. For N electrons evenly spaced around a ring, the highest multipole
that radiates in the Nth, and the power of this radiation is proportional to (v/c)2N+2. Then,
for steady motion with v/c � 1, the radiated power of a ring of N electrons is very small.

Verify this argument with a detailed calculation.
Recall the basic expression for the vector potential of the radiation fields,

A(r, t) =
1

c

∫
[J]

r
dVol′ ≈ 1

cR

∫
[J] dVol′ =

1

cR

∫
J(r′, t′ = t− r/c) dVol′, (1)

where R is the (large) distance from the observer to the center of the ring of radius a. For
uniform circular motion of N electrons with angular frequency ω, the current density J is a
periodic function with period T = 2π/ω, so a Fourier analysis can be made where,

J(r′, t′) =
∞∑

l=−∞
Jl(r

′) e−ilωt′, (2)

1This result is implicit in the first-ever computation of electromagnetic radiation, by FitzGerald (1883)
[1]. We can also consider the decomposition of the electromagnetic fields into plane electromagnetic waves
(photons), and note that a DC current has only zero-frequency-wave components (only virtual photons), and
hence no radiation (of real photons). See sec. 2.10 of [2].
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with,

Jl(r
′) =

1

T

∫ T

0

J(r′, t′)eilωt′ dt′. (3)

Then,

A(r, t) =
∑

l

Al(r)e
−ilωt, (4)

etc.
The radiated power follows from the Poynting vector [3],

dP

dΩ
=

c

4π
R2 |B|2 =

c

4π
R2 |∇ × A|2 . (5)

One must be careful in going from a Fourier analysis of an amplitude, such as B, to a Fourier
analysis of an intensity that depends on the square of the amplitude. A Fourier analysis of
the average power radiated during one period T can be given as,

d 〈P 〉
dΩ

=
1

T

∫ T

0

dP

dΩ
dt =

cR2

4πT

∫ T

0

|B|2 dt =
cR2

4πT

∫ T

0

B�
∑

l

Ble
−ilωt dt

=
cR2

4π

∑
l

Bl
1

T

∫ T

0

B�e−ilωt dt =
cR2

4π

∞∑
l=−∞

BlB
�
l

=
cR2

2π

∞∑
l=0

|Bl|2 ≡
∞∑
l=0

dPl

dΩ
. (6)

That is, the Fourier components of the time-averaged radiated power can be written as,

dPl

dΩ
=

cR2

2π
|Bl|2 =

cR2

2π
|∇ × Al|2 =

cR2

2π
|ilkn̂× Al|2 , (7)

where k = ω/c and n̂ points from the center of the ring to the observer.
Evaluate the Fourier components of the vector potential and of the radiated power first

for a single electron, and then for N electrons evenly spaced around the ring. It will come as
no surprise that a 3-dimensional problem with charges distributed on a ring leads to Bessel
functions, and we must be aware of the integral representation,

Jl(s) =
il

2π

∫ 2π

0

eilφ−is cosφ dφ. (8)

Use the asymptotic expansion for large index and small argument,

Jl(lx) ≈ (ex/2)l

√
2πl

(l � 1, x � 1), (9)

to verify the suppression of the radiation for large N .

This problem was first posed (and solved via series expansions without explicit mention
of Bessel functions) by J.J. Thomson [4]. He knew that atoms (in what we now call their
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ground state) don’t radiate, and used this calculation to support his model that the electric
charge in an atom must be smoothly distributed. This was a classical precursor to the view
of a continuous probability distribution for the electron’s position in an atom.

Thomson’s work was followed shortly by an extensive treatise by Schott [5], that included
analyses in term of Bessel functions correct for any value of v/c.

These pioneering works were largely forgotten during the following era of nonrelativistic
quantum mechanics, and were reinvented around 1945 when interest emerged in relativistic
particle accelerators. See Arzimovitch and Pomeranchuk [6], and Schwinger [7].2

2 Solution

The solution given here follows the succinct treatment by Landau, sec. 74 of [10].
For charges in steady motion at angular frequency ω in a ring of radius a, the current

density J is periodic with period T = 2π/ω, so the Fourier analysis (2) at the retarded
time t′ can be evaluated via the usual approximation that r ≈ R − r′ · n̂, where R is the
distance from the center of the ring to the observer, r′ points from the center of the ring to
the electron, and n̂ is the unit vector pointing from the center of the ring to the observer.
Then,

[J] = J(r′, t′ = t − r/c) =
∑

l

Jl(r
′) e−ilω(t−R/c+r′·n̂/c

=
∑

l

eil(kR−ωt)Jk(r
′) e−ikωr′·n̂/c, (10)

where k = ω/c.
The ring lies in the plane z = 0, centered on the origin. We use rectangular coordinates

(x, y, z), cylindrical coordinates (ρ, φ, z), and spherical coordinates (r, θ, φ) with angle θ
measured with respect to the +z axis. Then,

r′ = ρ(cos φ x̂ + sin φ ŷ), n̂ = sin θ x̂ + cos θ ẑ, and φ̂ = − sinφ x̂ + cosφ ŷ. (11)

We first consider a single electron, whose azimuth varies as φ = ωt + φ0, and whose
velocity is, of course, v = aω. The current density of a point electron of charge q can be
written, in a cylindrical coordinate system (with volume element ρdρ dφ dz), using Dirac
delta functions as,

J = ρchargevφ̂ = qvδ(ρ − a)δ(z)δ(φ − ωt − φ0)φ̂. (12)

The Fourier components Jl are given by,

Jl =
1

T

∫ T

0

J(r, t)eilt dt = qvδ(ρ − a)δ(z)
eil(φ−φ0)

ρωT
φ̂. (13)

Using eqs. (11) and (13) in (10) and noting that ωT = 2π, we find,

[J] =
qv

2πρ

∑
l

eil(kR−ωt)eil(φ−φ0−ωρ sin θ cosφ/c)δ(ρ − a)δ(z)φ̂. (14)

2See also [8, 9].
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Inserting this in eq. (1), we have,

A ≈ 1

cR

∫
[J]ρ dρ dφ dz =

qv

2πcR

∑
l

eil(kR−ωt−φ0)

∫ 2π

0

eil(φ−ωa sin θ cos φ/c)φ̂ dφ

=
∑

l

Ale
−ilωt, (15)

so that the Fourier components of the vector potential are,

Al =
qv

2πcR
eil(kR−φ0)

∫ 2π

0

eil(φ−v sin θ cosφ/c)(− sinφ x̂ + cosφ ŷ) dφ. (16)

The integrals yield Bessel functions with the aid of the integral representation (8). The
ŷ part of eq. (16) can be found by taking the derivative of this relation with respect to s,

J ′
l(s) = − il+1

2π

∫ 2π

0

eilφ−is cosφ cos φ dφ, (17)

For the x̂ part of eq. (16) we play the trick,

0 =

∫ 2π

0

ei(lφ−s cosφ)d(lφ − z cos φ)

= l

∫ 2π

0

eilφ−is cosφ dφ + s

∫ 2π

0

eilφ−is cosφ sinφ dφ, (18)

so that,
1

2π

∫ 2π

0

eilφ−is cosφ sinφ dφ = − l

s

1

2π

∫ 2π

0

eilφ−is cosφ dφ = − l

ils
Jl(s). (19)

Using eqs. (17) and (19) with s = lv sin θ/c in (16) we have,

Al =
qv

cR
eil(kR−φ0)

(
1

ilv sin θ/c
Jl(lv sin θ/c) x̂ − 1

il+1
J ′

l (lv sin θ/c) ŷ

)
. (20)

We skip the calculation of the electric and magnetic fields from the vector potential, and
proceed immediately to the angular distribution of the radiated power according to eq. (7),

dPl

dΩ
=

cR2

2π
|ilkn̂× Al|2 =

ck2l2R2

2π
|n̂× Al|2

=
ck2l2R2

2π

(
cos2 θ |Al,x|2 + |Al,y|2

)

=
c q2k2l2

2π

(
cot2 θJ2

l (lv sin θ/c) +
v2

c2
J

′2
l (lv sin θ/c)

)
. (21)

The present interest in this result is for v/c � 1, but in fact it holds for any value of v/c.
As such, it can be used for a detailed discussion of the radiation from a relativistic electron
that moves in a circle, which emits so-called synchrotron radiation. This topic is discussed
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further in Lecture 20 of the Notes [11].3 Furthermore, eq. (21) holds even if the velocity v
exceeds the speed of light c/n in a medium of index of refraction n, in which case a kind of
synchrotron-Čerenkov radiation is emitted [12]. Since each amplitude Al varies as 1/R at
large distance R from the source, the total radiated power varies as 1/R2.4

We now turn to the case of N electrons uniformly spaced around the ring. The initial
azimuth of the nth electron can be written as,

φn =
2πn

N
. (22)

The lth Fourier component of the total vector potential is simply the sum of components
(20) inserting φn in place of φ0,

Al =

N∑
n=1

qv

cR
eil(kR−φn)

(
1

ilv sin θ/c
Jl(lv sin θ/c)x̂ − 1

il+1
J ′

l(lv sin θ/c)ŷ

)
(23)

=
qveilkR

cR

(
1

imv sin θ/c
Jl(lv sin θ/c)x̂ − 1

il+1
J ′

l (lv sin θ/c)ŷ

) N∑
n=1

e−i2πln/N .

This sum vanishes unless l is a multiple of N , in which case the sum is just N . The lowest
nonvanishing Fourier component has order N , and the radiation is at frequency Nω. We
recognize this as Nth-order multipole radiation, whose radiated power follows from eq. (21)
as,

dPN

dΩ
=

c q2k2N2

2π

(
cot2 θJ2

N(Nv sin θ/c) +
v2

c2
J

′2
N (Nv sin θ/c)

)
. (24)

For large N but v/c � 1 we can use the asymptotic expansion (9), and its derivative,

J ′
l(lx) ≈ (ex/2)l

√
2πl x

(l � 1, x � 1), (25)

to write eq. (24) as,

dPN

dΩ
≈ c q2k2N

4π2 sin2 θ

(e

2

v

c
sin θ

)2N

(1 + cos2 θ) � N
dPE1

dΩ
(N � 1, v/c � 1). (26)

In eqs. (25) and (26) the symbol e inside the parentheses is not the charge but rather the
base of natural logarithms, 2.718...

For currents in, say, a loop of copper wire, v ≈ 1 cm/s, so v/c ≈ 10−10, while N ≈ 1023.
The radiated power predicted by eq. (26) is extraordinarily small!

Note, however, that this nearly complete destructive interference depends on the electrons
being uniformly distributed around the ring. Suppose instead that they were distributed with

3If the electron of mass m moves in a circle due to static magnetic field B, then the angular velocity
is given by ω = kc = v/a = qB/γmc, such that k2 = (q2B2/m2c4)(1 − v2/c2), and eq. (21) agrees with
eq. (74.8) of [10], noting that our θ is π/2 − θ there.

4This is in contrast to claims [13] that the power varies as 1/R for Čerenkov radiation emitted by a
particle in uniform circular motion .

5



random azimuths φn. Then the square of the magnetic field at order m has the form ,

|Bm|2 ∝
∣∣∣∣∣

N∑
n=1

e−imφn

∣∣∣∣∣
2

= N +
∑
l �=n

e−im(φl−φn) = N. (27)

Thus, for random azimuths the power radiated by N electrons (at any order) is just N times
that radiated by one electron.

If the charge carriers in a wire were localized to distances much smaller than their sepa-
ration, radiation of “steady” currents could occur. However, in the quantum view of metallic
conduction, such localization does not occur.

The random-phase approximation is relevant for electrons in a so-called storage ring, for
which the radiated power is a major loss of energy – or source of desirable photon beams
of synchrotron radiation, depending on one’s point of view. We do not expound here on
the interesting topic of the “formation length” for radiation by relativistic electrons, which
length sets the scale for interference of multiple electrons. See, for example, [14].

2.1 Comment

An interesting comment by Lai [15] is that the “radiation” terms in the Liénard-Wiechert
expressions for the electric and magnetic fields of an accelerated charge (sec. 63 of [10]) for
the case of uniform circular motion includes a piece corresponding the fields of a ring of
charge in steady circular motion. That is, the interference of the “radiation fields” of a
steady loop of current is not completely destructive, even though no “radiation” survives.5

(Oct. 5, 2023) Yet another argument as to why a steady current loop does not radiate is
given in [17].
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