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1 Problem

The charge density and electric fields near the edge of a conducting sheet vary as 1/
√

s,
where distance s is measured in from the edge. Thus, very high fields occur near the edge,
and physical devices such as parallel plate capacitors are subject to electrical breakdown due
to field emission at such edges.

A so-called streamer chamber is a device in which a pulse of high voltage is applied to
a box of gas contained within a parallel plate capacitor.1 If a high energy particle passed
through the box just before the pulse, the ionized atoms along the particle’s path will be
pulled apart by the pulse, each atom creating a region of further ionization. The light from
the subsequent recombination of the secondary ionizations appears as a “streamer”, which
can be photographed to visualize the path of the high-energy particle.

To avoid breakdown of the high voltage electrode, a conducting “guard ring” of radius
a is attached around the edge of the electrode. The high-voltage electrode lies between a
pair of ground electrodes to form a double-gap capacitor, as shown in Fig. 1, and extends
distance b � a beyond the ground electrodes. Each gap of the chamber has height h � b.

Figure 1: A double-gap streamer chamber of gap height h. The high-voltage
electrod extends distance b beyond the ground electrodes, and is terminated
in a conducting guard ring of radius a.

If the central electric field in each gap is E, deduce the value of the maximum electric
field on the guard ring.

1The early development of the streamer chamber was reported in G.E. Chikovani, V.A. Mikhailov and
V.N. Roinishvili, A Track Spark Chamber, Phys. Lett. 6, 254 (1963),
http://kirkmcd.princeton.edu/examples/detectors/chikovani_pl_6_254_63.pdf
Operation Mechanism of the Track Spark Chamber, Nucl. Instrum. Meth. 29, 261 (1964),
http://kirkmcd.princeton.edu/examples/detectors/chikovani_nim_29_261_64.pdf
B.A. Dollgoshein, B.U. Rodionov and B.I. Luchkov, Streamer Chamber, Nucl. Instrum. Meth. 29, 270 (1964),
http://kirkmcd.princeton.edu/examples/detectors/dolgoshein_nim_29_270_64.pdf
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This problem may be analyzed by considering the two-dimensional region of radius b
centered on the guard ring. The boundary condition at r = b is approximately,

φ(r = b) �
⎧⎨
⎩

Eh(1 − θ/θ0), |θ| < θ0,

0, θ0 < |θ|π,
(1)

where θ0 ≈ h/b � 1, and h is the gap height.

2 Solution

The approach is to consider the electrostatic problem of the two dimensional region a < r < b,
0 ≤ θ ≤ α, where α → 2π, in cylindrical coordinates (r, θ), as shown in Fig. 2. This region is
bounded by conducting surfaces held at potential Eh, except for the surface at r = b where
condition (2) holds.

Figure 2: The two-dimensional region a < r < b, 0 < θ < α used to analyze
the streamer-chamber guard ring.

Since we are interested in the electric fields, it is equivalent to consider the slightly
simpler problem obtained by subtracting potential φ = Eh everywhere. Then, the boundary
conditions are that φ = 0 for r = a and for θ = 0 and α, and,

φ(r = b) �
⎧⎨
⎩

−Ehθ/θ0), |θ| < θ0,

−Eh, θ0 < |θ|π,
(2)

for r = b.
Laplace’s equation, ∇2φ = 0, holds for the potential in the interior of the region. The

general form a series expansion for φ in such a region is,

φ(r, θ) =

∞∑
n=1

[
an

(r

a

)kn

+ bn

(a

r

)kn
]

[cn cos knθ + dn sin knθ] . (3)
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Since φ(r, 0) = 0 = φ(r, α), the angular factors can only be sin(nπθ/α) = sin(nθ/2) for
α = 2π. Since the radial extent includes neither the orgin nor ∞, factors of both rn/2 and
r−n/2 can occur. Thus, the potential can be written,

φ(r, θ) =
∞∑

n=1

[
an

(r

a

)n/2

+ bn

(a

r

)n/2
]

sin
nθ

2
. (4)

The use of factors r/a and a/r is convenient for enforcing the boundary condition φ(a, θ) = 0,
since this simply requires bn = −an.

For the electric field, we find,

Er = −∂φ

∂r
= −

∑
n

nπ

α
an

[
1

r

(r

a

)n/2

+
1

r

(a

r

)n/2
]

sin
nθ

2
, (5)

Eθ = −1

r

∂φ

∂θ
= −

∑
n

n

2
an

[
1

r

(r

a

)n/2

− 1

r

(a

r

)n/2
]

cos
nθ

2
(6)

At r = a, Eθ = 0. At θ = 0, Er = 0, as expected. At r = a,

Er = −1

a

∑
n

nan sin
nθ

2
. (7)

At θ = 0,

Eθ = − 1

2r

∑
n

nan

[(r

a

)n/2

−
(a

r

)n/2
]

. (8)

As expected, Eθ vanishes on the conducting surface r = a.
We use the boundary condition (2) at r = b to determine the coefficients an. Inserting

(4) in (2), multiplying by sin(nθ/2) and integrating from 0 to π, we find,

nan =
2Eh

π

(a

b

)n/2
(

cos
nπ

2
− 2

nθ0
sin

nθ0

2

)
. (9)

To obtain this, we ignored the small terms proportional to (a/b)n/2 in φ(r = b) compared to
those proportional to (b/a)n/2.

From (7), the field on the surface of the guard cylinder is,

Er(r = a) = −2Eh

πa

∑
n

(a

b

)n/2
(

cos
nπ

2
− 2

nθ0

sin
nθ0

2

)
sin

nθ

2
. (10)

Since a/b is very small, it suffices to keep only the first term, which is maximal at θ = π,

Er,max(r = a) � 2Eh

π
√

ab
. (11)

As desired, the field on the guard ring satisfies Er,max < E for reasonable values of a, b and
h.
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A sign that our approximations are somewhat delicate is obtained by evaluating Eθ(r = b)
using (8). If we keep only the first term, we find,

Eθ(r = b) ≈ Eh

πb
, (12)

instead of E. However, because of the form of the an, the terms in series (8) do not have
any factors of a/b, and this series converges much more slowly than does (7). The terms are
of similar magnitude until nθ0 ≈ π, i.e., until n ≈ πb/h, and Eθ(r = b) sums to E.
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