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1 Problem

A particle of charge e with velocity v = v ẑ passes through a metallic beam window at z = 0
and emerges into vacuum for z > 0. What is the frequency-angle spectrum of the radiation
in the region z > 0, assuming that the beam window is perfectly conducting and an infinite
sheet?

Consider also a charge e that moves through two semi-infinite media, with dielectric
constants ε1 for z < 0 and ε2 > ε1 for z > 0, on trajectory r = vt ẑ where v < c/n2 =
c/
√

ε2 < c/n1, where c is the speed of light in vacuum, and n =
√

ε is the index of refraction
of a dielectric (that has unit relative permeability).

2 Solution

We consider a method [1, 2] that worked well in characterizing Čerenkov radiation, based
on an expression for the spectrum of energy vs. angular frequency ω and solid angle Ω of a
pulse of radiation due to electric charge e with (generally time-dependent) velocity v,1

dUω

dΩ
=

e2ω2n

4π2c

∣∣∣∣
∫ ∞

−∞
n̂× (n̂× β) ei(ωt−k·r) dt

∣∣∣∣
2

=
ω2n

4π2c

∣∣∣∣
∫ ∞

−∞
eβ × k̂ ei(ωt−k·r) dt

∣∣∣∣
2

, (1)

in Gaussian units, and where k is the wave vector with k = nω/c in case of a medium with
index of refraction n, and hence k̂ = n̂ is the unit vector pointing to the observer. Also,
β = v/c.

2.1 Metal-Vacuum Interface

2.1.1 A First Approximation

We first apply eq. (1) simply to the motion of charge e with position r = vt ẑ = βct ẑ for
constant velocity v = v ẑ for z > 0 in vacuum, where k = ω k̂/c = ω (sin θ, 0, cos θ)/c for an
observer in the x-z plane,

dUω

dΩ
=

ω2

4π2c

∣∣∣∣
∫ ∞

0

eβ ẑ × k̂ ei(ωt−k·vt |̂z) dt

∣∣∣∣
2

=
e2β2ω2

4π2c

∣∣∣∣
∫ ∞

0

sin θ eiωt(1−β cos θ) dt

∣∣∣∣
2

=
e2β2ω2 sin2 θ

4π2c

∣∣∣∣e
iω∞(1−β cos θ) − 1

iω(1 − β cos θ)

∣∣∣∣
2

=
e2β2 sin2 θ

4π2c(1 − β cos θ)2
(2)

1This approach follows pp. 261-265 of [3]. See also sec. 20-7 of [4].
A derivation of eq. (1) in vacuum via the Liènard-Wiechert fields is given in sec. 14.5 of [5].
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Uω =

∫
dUω

dΩ
dΩ =

e2β2

2πc

∫ 1

0

1 − cos2 θ

(1 − β cos θ)2
d cos θ

=
e2β2

2πc

[
1

β(1 − β cos θ)
+

1

β3

(
1 − β cos θ − 2 ln(1 − β cos θ) − 1

1 − β cos θ

)]1

0

=
e2β2

2πc

[
1

1 − β2 +
1

β3

(
−β − ln

1 − β

1 + β
− β

1 − β2

)]

=
e2β2

2πc

[
1

1 − β2

(
1 − 1

β2

)
− 1

β2 +
1

β3 ln
1 + β

1 − β

]
=

e2

2πc

[
2

β
ln γ(1 + β) − 1

]
, (3)

taking ei∞ = 0 as representing the time-average of the oscillatory function, and using Dwight
90.2 and 92.2 [6]. In the relativistic limit, β → 1, where most observations of transition
radiation have been made,

Uω → e2 ln 2γ

πc
, with γ =

1√
1 − β2

. (4)

As β → 0, eq. (3) goes to the nonzero value e2/2πc.

2.1.2 A Better Approximation – Image Method

The preceding analysis ignored the effect of the time-dependent charge density induced on
the surface of the conducting sheet at z = 0. In a better approximation we suppose that
this effect is equivalent to the presence of an image charge −e at z = −vt for t = 0 (and
the conducting sheet is absent. For the actual situation, the surface charge at time t > 0
exists on the sheet only inside a circle of radius ct about the origin, which the image method
implies that the surface charge density is nonzero everywhere on the sheet for t > 0, so the
result of this section is not “exact”.

Adapting eq. (1) to include the image charge, we have,2

dUω

dΩ
=

ω2

4π2c

∣∣∣∣
∫ ∞

0

e βe × k̂ ei(ωt−k·re) dt +

∫ ∞

0

(−e)β−e × k̂ ei(ωt−k·r−e) dt

∣∣∣∣
2

=
e2ω2β2 sin2 θ

4π2c

∣∣∣∣
∫ ∞

0

eiωt(1−β cos θ) dt +

∫ ∞

0

eiωt(1+β cos θ) dt

∣∣∣∣
2

(5)

=
e2ω2β2 sin2 θ

4π2c

∣∣∣∣e
iω∞(1−β cos θ) − 1

iω(1 − β cos θ)
+

eiω∞(1+β cos θ) − 1

iω(1 + β cos θ)

∣∣∣∣
2

=
e2β2

π2c

sin2 θ

1 − β2 cos2 θ
,

where k = ω k̂/c = ω(sin θ, 0, cos θ)/c is in the direction of the radiation to the observer
(located at large z > 0), k̂ = n̂, βe,−e = ±v ẑ/c = ±β ẑ, re,−e = ±vt ẑ = ±βct ẑ, and we

take eiω∞(1±β cos θ) = 0, as representing the time-average of the oscillatory behavior at large
times.

2The result (5) was first obtained in [7]. See also sec. 2.1.2 of [8].
This result was obtained by a different approximation, called “ quasi-classical” in [9]. See also sec. 28b,

particularly p. 283, of [10].

2



The frequency spectrum of the transition radiation is, noting that 0 < θ < π/2 for an
observer with z > 0,

Uω =

∫
dUω

dΩ
dΩ =

2e2

πcβ2

∫ 1

0

1 − cos2 θ

(1/β2 − cos2 θ)2
d cos θ

=
2e2

πcβ2

[
β2 cos θ

2(1/β2 − cos2 θ)
+

β3

4
ln

1/β + cos θ

1/β − cos θ
− cos θ

2(1/β2 − cos2 θ)
+

β

4
ln

1/β + cos θ

1/β − cos θ

]1

0

=
2e2

πcβ2

[
β4

2(1 − β4)
+

β3

4
ln

1 + β

1 − β
− β2

2(1 − β4)
+

β

4
ln

1 + β

1 − β

]

=
2e2

πcβ2

[
−β2

2
+

β(1 + β2)

4
ln(γ2(1 + β)2)

]
=

e2

πc

[
1 + β2

β
ln γ(1 + β) − 1

]
, (6)

using Dwight 140.2 and 142.2 [6]. In the relativistic limit, β → 1,

Uω → 2e2 ln 2γ

πc
, (7)

which is twice that found in the first approximation (4). As β → 0, eq. (6) goes to zero.

2.2 Interface between Two Dielectrics

2.2.1 A First Approximation

For a first approximation we apply a version of eq. (1) considering only the motion r =
vt ẑ = βct ẑ of the charge e, assumed to constant velocity v = v ẑ both in the medium with
(relative) dielectric constant ε1 at z < 0 and in the medium with (relative) dielectric constant
ε2 at z > 0. We consider only the forward radiation (|θ| < π/2 received by an observer in
the x-z plane with large z > 0. If a ray observed at angle θ2 for z > 0 originated at z < 0 it
had angle θ1 for z < 0 related by Snell’s law, n1 sin θ1 = n2 sin θ2, where we take the indices
of refraction to be n1,2 =

√
ε1,2. To avoid complications of total internal reflection at the

interface of rays emanating from z < 0, we suppose that n1 < n2, i.e., ε1 < ε2. Then, noting
that ki = ni ω k̂i/c, and setting e±i∞ = 0 as before,

dUω

dΩ
=

n2 ω2

4π2c

∣∣∣∣
∫ 0

−∞
e k̂1 × β ei(ωt−k·r) dt +

∫ ∞

0

e k̂2 × β ei(ωt−k2·r) dt

∣∣∣∣
2

=
e2n2 ω2β2

4π2c

∣∣∣∣sin θ1

∫ 0

−∞
eiωt(1−n1β cos θ1) dt + sin θ2

∫ ∞

0

eiωt(1−n2β cos θ2) dt

∣∣∣∣
2

=
e2n2 ω2β2

4π2c

∣∣∣∣n2

n1
sin θ2

∫ 0

−∞
eiωt(1−n1β cos θ1) dt + sin θ2

∫ ∞

0

eiωt(1−n2β cos θ2) dt

∣∣∣∣
2

=
e2n2 ω2β2 sin2 θ2

4π2c n2
1

∣∣∣∣n2
1 − e−iω∞(1−n1β cos θ1)

iω(1 − n1β cos θ1)
+ n1

eiω∞(1+n2β cos θ2) − 1

iω(1 − n2β cos θ2)

∣∣∣∣
2

=
e2n2 β2 sin2 θ2

4π2c n2
1

∣∣∣∣ n2

1 − n1β cos θ1
− n1

1 − n2β cos θ2

∣∣∣∣
2

. (8)
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The transition radiation of eq. (8) is large only when the denominators in the last line
are small, i.e., when ni, β and cos θi are all close to 1. We recall the atomic model of the
frequency dependence of the dielectric constant ε,3

ε(ω) = 1 +
4piNe2

m

∑
j

fj

ωj − ω2 − iΓj ω
,

∑
j

fj = 1, (9)

where N is the number density of atoms, e and m are the charge and mass of an electron, fj is
the relative strength (oscillator strength) of oscillation j in the atom, with angular frequency
ωj and damping constant Γj .e The dielectric constant is near 1 only for high frequencies, in
which case,

ε(ω large) ≈ 1 − 4piNe2

m ω2
= 1 − ω2

p

ω2
, (10)

where ωp =
√

4πNe2/m is the plasma frequency of the medium. The corresponding index
of refraction is,4

n(ω large) =
√

ε(ω large) ≈ 1 − ω2
p

2ω2
. (11)

For β near 1, we write β =
√

1 − 1/γ2 ≈ 1 − 1/2γ2, and of cos θi near 1 we have cos θi ≈
1 − θi/2. In these limits,

1

1 − niβ cos θi
≈ 1

1 − (1 − ω2
pi
/2ω2)(1 − 1/2γ2)(1 − θ2

i /2)
≈ 2

ω2
pi
/ω2 + 1/γ2 + θ2

i

, (12)

and the frequency-angle spectrum of the transition radiation is, noting that θ1 ≈ θ2 since
n1 ≈ n2 ≈ 1,

dUω

dΩ
≈ e2θ2

2

π2c

∣∣∣∣∣
1

ω2
p1

/ω2 + 1/γ2 + θ2
2

− 1

ω2
p2

/ω2 + 1/γ2 + θ2
2

∣∣∣∣∣
2

. (13)

As expected, this vanishes if the two media are the same, i.e., if ωp1 = ωp2.
The angular distribution peaks for,

ω2
p1

ω2
+

1

γ2
< θ2

2 <
ω2

p2

ω2
, (14)

i.e., in the forward direction (like Bremsstrahlung, such that there was early skepticism that
transition radiation is not distinct from Bremsstrahlung).

3See, for example, p. 135 of [11] or sec. 7.5 of [5]
4At the high frequencies where the index of refraction n is less than 1, there is no Čerenkov radiation,

so in practice the issue of interference between Čerenkov and transition radiation is moot.
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The angular distribution can be integrated to give, with x = θ2
2 and Ai = ω2

pi
/ω2 + 1/γ2,

Uω(ω large) =

∫
dUω

dΩ
dΩ ≈ 2π

∫ ∞

0

dUω

dΩ
θ2 dθ2 = π

∫ ∞

0

dUω

dΩ
dθ2

2

≈ e2

πc

∫ ∞

0

x

∣∣∣∣ 1

A1 + x
− 1

A2 + x

∣∣∣∣
2

dx =
e2(A1 − A2)

2

πc

∫ ∞

0

dx
x

(A1 + x)2(A2 + x)2

=
e2(A1 − A2)

2

πc

[
A1 + A2

(A1 − A2)3
ln

A1 + x

A2 + x
+

1

(A1 − A2)2

(
A1

A1 + x
+

A2

A2 + x

)]∞

0

=
e2

πc

[
A1 + A2

(A1 − A2)
ln

A2

A1
− 2

]
=

e2

πc

[
ω2

p1
+ ω2

p2
+ 2ω2/γ2

ω2
p1
− ω2

p2

ln

(
ω2

p2
+ ω2/γ2

ω2
p1

+ ω2/γ2

)
− 2

]

≈ e2

6πc

γ4

ω4
(ω2

p1
− ω2

p2
)2, (15)

using Dwight 113,1 [6], and where the last approximation requires evaluation to third order.
The photon number spectrum is obtained by dividing eq. (15) by �,

Nω =
Uω

�
≈ 1

6π

e2

�c

γ4

ω4
(ω2

p1
− ω2

p2
)2 =

1

6π

1

137

γ4

ω4
(ω2

p1
− ω2

p2
)2, (16)

which is a very weak effect, although it does vary as γ4, so can be significant for ultrarela-
tivistic particles.

Our eq. (8) appears to be rather different than the Ginzburg-Frank result,5

dUω

dΩ
=

e2v2n2 sin2 θ2 cos2 θ2

π2c3

∣∣∣∣∣∣
ε1 − ε2(

1 − ε2β
2 cos2 θ2

) (
1 − β

√
ε1 − ε2 sin2 θ2

)

×1 − β2ε2 − β
√

ε1 − ε2 sin2 θ2

ε1 cos θ2 +
√

ε1ε2 − ε2
2 sin2 θ2

∣∣∣∣∣
2

, (17)

but in the limit of high frequency and high velocity, eqs. (8) and (17) lead to the same results,
our eqs. (13)-(16),6 so it is perhaps not necessary to seek better approximations than that
of this section.

2.2.2 A Better Approximation – Image Method

The method of sec. 2.2.1 ignored the effects of time-dependent polarization charges near
the interface (z = 0) between the two semi-infinite dielectric media with (relative) dielectric
constants ε1(z < 0) and ε2(z > 0). For a better approximation, we recall the image method
for dielectrics,7 that when charge e is at (0, 0, z) in medium 2, the electric field for z > 0

5See eq. (24.22) of [10], or eq. (2.41) of [8].
6Compare with eq. (2.59), p. 35 of [8].
7See, for example, sec. 2.1.1 of [12]. Conventions differ in the dielectric image method. Sec. 4.4 of [5]

supposes that the image charge is not in vacuum, but in a medium with dielectric constant ε2, while sec. 5.05
of [13] supposes the image charge is in a medium of dielectric constant ε1.

5



is that in vacuum due to effective charge e/ε2 at (0, 0, z) and an image charge −(e/ε2)(ε1 −
ε2)/(ε1 + ε2), while the field for z < 0 is that due to effective charge 2e/(ε1 + ε2) at (0, 0, z)
in vacuum.

We consider the case of an observer with z > 0 (i.e., forward radiation), such that a
ray with angle θ2 to the z-axis at the observer, if it originates with z < 0, makes angle θ1

to the z-axis related by Snell’s law, n1 sin θ1 = n2 sin θ2, i.e.,
√

ε1 sin θ1 =
√

ε2 sin θ2. Then,
the frequency-angle spectrum of Čerenkov radiation by charge e with position x = vt ẑ and
v > c/n1,2 follows from eq. (1) as,8

dUω

dΩ
=

ω2n2

4π2c

∣∣∣∣
∫ ∞

0

e

ε2
β × k̂2 eiωt(1−n2β cos θ2) dt +

∫ ∞

0

− e

ε2

ε1 − ε2

ε1 + ε2
(−β) × k̂2 eiωt(1+n2β cos θ2) dt

+

∫ 0

−∞

2e

ε1 + ε2
β × k̂1 eiωt(1−n1β cos θ1) dt

∣∣∣∣
2

=
e2ω2n2v

2

4π2c3

∣∣∣∣ 1

ε2
sin θ2

−1

iω(1 − n2β cos θ2)
+

1

ε2

ε1 − ε2

ε1 + ε2
sin θ2

−1

iω(1 + n2β cos θ2)

+
2

ε1 + ε2
sin θ1

1

iω(1 − n1β cos θ1)

∣∣∣∣
2

=
e2√ε2v

2 sin2 θ2

4π2c3ε2
2(ε1 + ε2)2

∣∣∣∣∣
2ε1 + 2ε2

√
ε2β cos θ2

1 − ε2β
2 cos2 θ2

−
√

ε2

ε1

2ε2

1 −√
ε1β

√
1 − (ε2/ε1) sin2 θ2

∣∣∣∣∣
2

=
e2v2√ε2 sin2 θ2

π2c3

∣∣∣∣∣∣
√

ε1

(
ε1 + ε

3/2
2 β cos θ2

)(
1 − β

√
ε1 − ε2 sin2 θ2

)
− ε

3/2
2

(
1 − ε2β

2 cos2 θ2

)
√

ε1ε2(ε1 + ε2)
(
1 − ε2β

2 cos2 θ2

) (
1 − β

√
ε1 − ε2 sin2 θ2

)
∣∣∣∣∣∣
2

. (18)

This does vanish if ε1 = ε2, but is not quite the same as the Ginzburg-Frank result (17).
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