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1 Problem

When a charged particle (of mass m and charge e) interacts with a linearly polarized plane
wave with electric field Ex = E0 cos(kz − ωt), the particle’s motion consists of a trans-
verse oscillation. Hence, the particle has transverse momentum, while the wave carries only
longitudinal momentum. How is Newton’s 3rd law satisfied in this situation?

Hint: Consider the interaction field momentum.
This problem may be analyzed in the frame in which the particle is at rest on average.

The longitudinal oscillation is negligible if eE0/mωc � 1, as may be assumed.

2 Solution

The general sense of the answer has been given by Poynting [1], who noted that an electro-
magnetic field can be said to contain a flux of energy (energy per unit area per unit time)
given by,

S =
c

4π
E× B, (1)

in Gaussian units, where E is the electric field, B is the magnetic field (taken to be in vacuum
throughout this paper) and c is the speed of light in vacuum.

Thomson [2, 3, 4] and Poincaré [5] noted that this flow of energy can also be associated
with a momentum density given by,

pfield =
S

c2
=

E ×B

4πc
=

(Ewave + Echarge) × (Bwave + Bcharge)

4πc
. (2)

Hence, in the problem of a free electron in a plane electromagnetic wave we are led to seek
an electromagnetic field momentum that is equal and opposite to the mechanical momentum
of the electron. However, this field momentum should not include either of the self-momenta
(Ewave × Bwave)/4πc or (Echarge × Bcharge)/4πc. The former is independent of the electron,
while the latter can be considered as a part of the mechanical momentum of the electron
according to the concept of “renormalization”.

We desire to show that the interaction field momentum,

Pint =

∫
pint dVol =

∫
dVol

Ewave × Bcharge + Echarge ×Bwave

4πc
, (3)

is equal and opposite to the mechanical momentum of the electron.
We consider a plane electromagnetic wave that propagates in the +z direction of a rect-

angular coordinate system. For linear polarization along x,

Ewave = E0 cos(kz − ωt) x̂, Bwave = E0 cos(kz − ωt) ŷ, (4)
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where ω = kc is the angular frequency of the wave, k = 2π/λ is the wave number and x̂ is a
unit vector in the x direction, etc.

2.1 Transverse Momentum of the Electron in a Weak Wave

A free electron of mass m oscillates in this field such that its average position is at the origin.
This simple statement hides the subtlety that our frame of reference is the average rest frame
of the electron when inside the wave, and is not the lab frame of an electron that is initially
at rest, but which is overtaken by a wave. If the velocity of the oscillating electron is small,
we can ignore the v/c × B force, and take the motion to be entirely in the plane z = 0.
Then, (also ignoring radiation damping) the equation of motion of the electron is,

mẍ = eEwave(0, t) = ex̂E0 cos ωt. (5)

Using eq. (4) we find the position of the electron to be,

x = − e

mω2
x̂E0 cos ωt. (6)

and the mechanical transverse momentum of the electron is,

Pmech,⊥ = mẋ =
e

ω
x̂E0 sinωt. (7)

It is important to note that Pmech,⊥ is proportional to the first power of the wave field
strength.

2.2 Longitudinal Motion of the Electron

The root-mean-square (rms) transverse velocity of the electron is,

vrms =
√

〈ẋ2〉 =
eErms

mωc
c. (8)

The condition that the v/c × B force be small is then,

η ≡ eErms

mωc
� 1, (9)

where the dimensionless measure of field strength, η, is a Lorentz invariant. Similarly, the
rms departure of the electron from the origin is,

xrms =
eErms

mω2
=

ηλ

2π
. (10)

Thus, condition (9) also insures that the extent of the motion of the electron is small com-
pared to a wavelength, and so we may use the dipole approximation when considering the
fields of the oscillating electron.
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In the weak-field approximation, we can now use eq. (7) for the velocity to evaluate the
second term of the Lorentz force,

e
v

c
×B =

e2E2
x

2mωc
ẑ sin 2ωt. (11)

This term vanishes for circular polarization, in which case the motion is wholly in the trans-
verse plane. However, for linear polarization the v/c × B force leads to oscillations along
the z axis at frequency 2ω, as first analyzed in general by Landau [6]. For polarization along
the x-axis, the x-z motion has the form of a “figure 8”, which for weak fields (η � 1) is
described by,

x = −eEx

mω
cos ωt, z = − e2E2

x

8m2ω3c
sin 2ωt. (12)

If the electron had been at rest before the arrival of the plane wave, then inside the wave
it would move with an average drift velocity given by,

vz =
η2/2

1 + η2/2
c, (13)

along the direction of the wave vector, as first deduced by McMillan [7]. In the present
paper, we work in the frame in which he electron has no average velocity along the z axis.
Therefore, prior to its encounter with the plane wave the electron had been moving in the
negative z direction with speed given by eq. (13).

2.3 The Interference Term Pwave,static

The oscillating charge has oscillating fields, and the strength of those oscillating fields is
proportional to the strength of the incident wave field. Hence, if we insert the oscillating
fields of the charge into eq. (3), the interaction momentum will be quadratic in the wave
field strength. This momentum cannot possibly balance the mechanical momentum (7).

For the interaction momentum (3) to yield a result proportional to the wave field strength,
we need to insert a field associated with the charge that is independent of the wave field.
Thus, we are led to consider the static field of the charge.

Indeed, the fields associated with the electron can be regarded as the superposition of
those of an electron at rest at the origin plus those of a dipole consisting of the actual
oscillating electron and a positron at rest at the origin. Thus, we can write the electric field
of the electron as Estatic + Eosc, and the magnetic field as Bosc.

The interaction field momentum density can now be written,

pint = pwave,static + pwave,osc, (14)

where,

pwave,static =
Estatic × Bwave

4πc
. (15)

and,

pwave,osc =
Ewave × Bosc + Eosc ×Bwave

4πc
. (16)
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We recall from eqs. (7) and (12) that the transverse mechanical momentum of the oscil-
lating electron has pure frequency ω. Since the wave and the oscillating part of the electron’s
field each have frequency ω, the term pwave,osc contains harmonic functions of ω2, which can
be resolved into a static term plus ones in frequency 2ω. Hence, we have a second reason why
we should not expect this term to cancel the mechanical momentum. Rather, we look to the
term pwave,static, since this has pure frequency ω. The term pwave,osc cancels the longitudinal
momentum associated with the “figure-8” motion, and also includes a “hidden momentum”
related to the fact that the average rest frame of an electron inside the wave is not the rest
frame of the electron in the absence of the wave, as sketched in secs. 3-4. See also [8].

The static field of the electron at the origin is, in rectangular coordinates,

Estatic =
e

r3
(xx̂ + yŷ + zẑ), (17)

where r is the distance from the origin to the point of observation. Combing this with eq. (4)
we have,

pwave,static =
e

4πcr3
{−zx̂ + xẑ}E0 cos(kz − ωt). (18)

When we integrate this over all space to find the total field momentum, the term in ẑ vanishes
as it is odd in x. Likewise, after expanding cos(kz − ωt), the terms proportional to z cos kz
vanish on integration. The remaining term is thus,

Pwave,static =

∫
dVol pwave,static (19)

= − e

4πc
x̂E0 sinωt

∫
V

z sin kz

r3

= − e

ω
x̂E0 sinωt = −Pmech,⊥,

after an elementary volume integration (that involves integration by parts twice).1

It is noteworthy that the integration is independent of any hypothesis as to the size of
a classical electron. Indeed, the integrand of eq. (19) can be expressed as cos θ sin(kr cos θ)/r2

via the substitution z = r cos θ. Hence, the integral over a spherical shell varies as sin(kr)/k2r2−
1 ∫

V

z sin kz

r3
= 2π

∫ ∞

0

dr

∫ 1

−1

du u sin(kru) = 2π

∫ ∞

0

dr

[
−u cos(kru)

kr

∣∣∣∣
1

−1

+
∫ 1

−1

du
cos(kru)

kr

]
(20)

= −4π

∫ ∞

0

dr
cos(kr)

kr
+ 4π

∫ ∞

0

dr
sin(kr)
k2r2

= −4π

∫ ∞

0

dr
cos(kr)

kr
− 4π

sin(kr)
k2r

∣∣∣∣
∞

0

+ 4π

∫ ∞

0

dr
cos(kr)

kr
=

4π

k
.

sin(kr)/k2r2 − cos(kr)/kr
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cos(kr)/kr (see footnote 1), and significant contributions to the integral occur for radii up to
one wavelength of the electromagnetic wave. This contrasts with the self-momentum density
of the electron which is formally divergent; if the integration is cut off at a minimum radius
(the classical electron radius), the dominant contribution occurs within twice that radius.

We found the appealing result that Pmech,⊥ = −Pwave,static for a weak, sinusoidal electro-
magnetic wave,, but this may not hold for more general waveforms.

3 The Momentum Pwave,osc

Several subtleties in the argument appear when we consider the other interference term
Pwave,osc in the momentum density (14).

3.1 Circular Polarization

After a somewhat lengthy calculation [8] we find that for a circularly polarized wave, the
only the z component of Pwave,osc is nonzero,

Pwave,osc,z =

∫
V

pwave,osc,z = −4

3
η2mc. (21)

Recall that we have performed the analysis in a frame in which the electron has no
longitudinal momentum. However, as remarked in sec. 2.3, prior to its encounter with the
wave the electron had velocity vz = −η2c/2 (assuming η2 � 1), and therefore had initial
mechanical momentum Pmech,z = −η2mc/2. So, we would expect that this initial mechanical
momentum had been converted to field momentum, if momentum is to be conserved.

We continue to be puzzled as to why the result (21) is 8/3 times larger than that required
to satisfy momentum conservation.

3.2 Linear Polarization

We find the longitudinal component of the interference field momentum of a free electron in
a linearly polarized wave to be [8],

Pwave,osc,z = −4

3
η2mc +

2

3
ηmc cos 2ωt. (22)

The constant term is the same as that found in eq. (21) for circular polarization, and rep-
resents the initial mechanical momentum of the electron that became stored in the electro-
magnetic field once the electron became immersed in the wave.

As for the second term of eq. (22), recall from eq. (12) that for linear polarization the
electron oscillates along the z axis at frequency 2ω. Hence, the z component of the mechanical
momentum of the electron is,

Pmech,z = mż = −η2mc

2
cos 2ωt. (23)
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The term in Pwave,osc,z at frequency 2ω is −4/3 times the longitudinal component of the
mechanical momentum associated with the “figure 8” motion of the electron. Thus, we have
not been completely successful in accounting for momentum conservation when the small,
oscillatory longitudinal momentum is considered.

The factors of 4/3 and 8/3 found here may be related to the well-known factor of 4/3
that arise in analyses of the electromagnetic energy and momentum of the self fields of an
electron [10, 11, 12]. A further appearance of a factor of 8/3 in the present example occurs
when we consider the field energy of the interference terms.

4 The Interference Field Energy

It is also interesting to examine the electromagnetic field energy of an electron in a plane
wave. As for the momentum density (2), we can write,

utotal =
(Ewave + Estatic + Eosc)

2 + (Bwave + Bosc)
2

8π
, (24)

for the field energy density. Again, we no not consider the divergent energies of the self
fields, but only the interference terms,

uint = uwave,static + uwave,osc, (25)

where,

uwave,static =
Ewave · Estatic

4π
. (26)

and,

uwave,osc =
Ewave ·Eosc + Bwave · Bosc

4π
. (27)

In general, the interference field energy density is oscillating. Here, we look for terms
that are nonzero after averaging over time. We see at once that,

〈uwave,static〉 = 0, (28)

since all terms have time dependence of cosωt or sinωt. In contrast, 〈uwave,osc〉 will be
nonzero as its terms are products of sines and cosines, and we find [8] that,

Uint =

∫
V

〈uwave,osc〉 = −4

3
η2mc2, (29)

for waves of either linear or circular polarization. As with the case of the interference
field momentum, this interference field energy is distributed over a volume of order a cubic
wavelength around the electron. Being an interference term, its sign can be negative.

We can interpret the quantity,

Uint

c2
= −4

3
η2m (30)
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as compensation for the relativistic mass increase of the oscillating electron, which scales as
v2

rms/c
2 and hence as η2 (for small η, recall eq. (8)). Indeed, a general result for the motion

of an electron in a plane wave of arbitrary strength η is that its rms relativistic mass, often
called its effective mass, is [9],

meff = m
√

1 + η2. (31)

For small η, the increase in mass is,

Δm ≈ 1

2
η2m. (32)

Thus, the decrease in field energy due to the interference terms between the electromag-
netic fields of the wave and electron is −8/3 times the mass increase it should compensate.

4.1 The Radiation Reaction

Our analysis of the energy balance of an electron in a plane wave is not quite complete. We
have neglected the energy radiated by the electron. Since the rate of radiation is constant
(once the electron is inside the plane wave, and with neglect of the radiation reaction),
the total radiated energy grows linearly with time, and eventually becomes large. The
interference energy (29) is constant in time, and hence cannot account for the radiated
energy.

In the present example, it appears that the radiated energy is not compensated by a
decrease in the near zone electromagnetic energy. Rather, the mechanical energy of the
charge must be decreasing, due to the effect of the radiation-reaction force first, Frad react =
2e2v̈/3c3 (which is periodic in the present example), identified by Planck [13] (1896).2 This
contrasts with the case of a uniformly accelerated charge, for which the mechanical radiation
reaction vanishes while the radiated energy increases at the expense of the near zone field
energy, as first discussed by Schott [16] (see also [17]).
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