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1 Problem

In two recent e-prints, Tuval and Yahalom proposed devices that could be called “electro-
magnetic spaceships”, based on the net force exerted on a pair of time-dependent current
loops [1], or a time dependent current loop and a permanent magnet [2].

Show that “rocket” propulsion1 (via emission of electromagnetic waves) is possible in the
first example, but not in the second.2

2 Solution

2.1 Development of the Concept of Electromagnetic Field
Momentum

2.1.1 Ampère

Ampère argued [4] that the static forces on a pair of steady electrical currents are equal and
opposite. He had no concept of electromagnetic (field) momentum.3

2.1.2 Maxwell

Maxwell (sec. 57 of [6]) interpreted Faraday’s electrotonic state as the vector potential A,
and gave an interpretation of this as “electromagnetic momentum”, in the sense that,

P
(Maxwell)
EM =

∫
ρA(C)

c
dVol (1)

is electromagnetic momentum associated with an electric charge density ρ in the (Coulomb-
gauge) vector potential (in Gaussian units, with c being the speed of light in vacuum).
Maxwell also argued (sec. 792 of [7]) that the radiation pressure P of light4 is equal to its
energy density u,

P = u =
D2

4π
=

H2

4π
(2)

for an electromagnetic wave with fields D and H in vacuum, but he did not explicitly
associate this pressure with momentum in the electromagnetic field.

1In “rocket” propulsion, a device has a net gain of momentum in reaction to ejection of particles/waves,
which momentum gain persist after its “rocket fuel” is expended.

2Neither scenario is a “bootstrap spaceship” [3].
3Ampère also had no concept of electromagnetic fields, which were first discussed by Faraday, sec. 2147

of [5].
4Apparently, Kepler considered the pointing of comets’ tails away from the Sun as evidence for radiation

pressure of light [8].
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2.1.3 J.J. Thomson

In 1891, Thomson noted [9] that a sheet of electric displacement D (parallel to the surface)
which moves perpendicular to its surface with velocity v must be accompanied by a sheet
of magnetic field H = v/c × D according to the free-space Maxwell equation ∇ × H =
(1/c) ∂D/∂t.5 Then, the motion of the energy density of these sheets implies there is also a
momentum density, eqs. (2) and (6) of [9],

p
(Thomson)
EM =

D × H

4πc
. (3)

In 1893, Thomson transcribed much of his 1891 paper into the beginning of Recent Researches
[13], adding the remark (p. 9) that the momentum density (3) is closely related to the
Poynting vector [14, 15],6,7

S =
c

4π
E × H. (4)

The form (3) was also used by Poincaré in 1900 [21], following Lorentz’ convention [22]
that the force on electric charge q be written q(D + v/c×H), and that the Poynting vector
be (c/4π)D × H. In 1903 Abraham [23] argued for,

p
(Abraham)
EM =

E ×H

4πc
=

S

c2
, (5)

and in 1908 Minkowski [24] advocated the form,8,9

p
(Minkowski)
EM =

D × B

4πc
. (6)

Thomson did not relate the momentum density (3) to the radiation pressure of light,
eq. (2), until 1904 (p. 355 of [26]) when he noted that P = F/A = c pEM = D2/4π = H2/4π
for fields moving with speed c in vacuum, for which D = H. He also gave an argument (p. 348
of [26]) that the forms (1) and (3) for field momentum are equivalent once the sources of the
fields are taken into account.10

5Variants of this argument were given by Heaviside in 1891, sec. 45 of [10], and much later in sec. 18-4 of
[11], where it is noted that Faraday’s law, ∇×E = −(1/c) ∂B/∂t, combined with the Maxwell equation for
H implies that v = c in vacuum, which point seems to have been initially overlooked by Thomson, although
noted in sec. 265 of [12].

6The idea that an energy flux vector is the product of energy density and energy flow velocity seems to
be due to Umov [17], based on Euler’s continuity equation [18] for mass flow, ∇ · (ρv) = −∂ρ/∂t.

7Thomson argued, in effect, that the field momentum density (3) is related by pEM = S/c2 = uv/c2

[9, 13]. See also eq. (19), p. 79 of [10], and p. 6 of [16]. It turns out that the energy flow velocity defined by
v = S/u can exceed c (see, for example, sec. 2.1.4 of [19] and sec. 4.3 of [20].

8Minkowski, like Poynting [14], Heaviside [15] and Abraham [23], wrote the Poynting vector as E × H.
See eq. (75) of [24].

9For some remarks on the “perpetual” Abraham-Minkowski debate see [25].
10Possibly, Thomson delayed publishing the relation of radiation pressure to his expression (3) until he

could demonstrate its equivalence to Maxwell’s form (1). For other demonstrations of this equivalence, see
[27].
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The first discussion that a static electromagnetic field might contain momentum was given
by Thomson on p. 347 of [26], where he deduced that the field momentum of a magnetic
dipole m, a small solenoid coil with vector potential A(C) = m×r̂

r2 , in the electric field E of a
distance point charge q, is,

PEM =
E ×HinVolcoil

4πc
=

E × m

c

=

∫
ρA(C)

c
dVol =

m × qr̂

cr2
=

E × m

c
. (7)

Thomsom remarked, in effect, that the first line of eq. (7) suggests the field momentum is
associated with the magnetic dipole,11 while the second line suggests it is associated with the
electric charge. He then noted that if the magnetic dipole were a small permanent magnet
(in the field of an electric charge), and this magnet were demagnetized by “tapping”, the
magnet would acquire the initial momentum (7) according to the first line, while the electric
charge should aquire this momentum according to second line.

He did not conclude that these contradictory statements imply the total momentum
of the system must be zero (when it is “at rest”) [29], such that there exists a “hidden”
mechanical momentum in the system equal and opposite to the field momentum.12 Then, if
the field momentum vanishes the “hidden” mechanical momentum does also, and the total
momentum of the system remains zero.13

That this “hidden” momentum is of order 1/c2,14 and so is a “relativistic” effect, was
beyond the scope of discussions in 1904.15

2.1.4 Page and Adams

According to the Lorentz force law, the forces of two moving charges on each other are not
equal and opposite in general. An explicit verification at order 1/c2 that the net force is
equal and opposite to the time rate of change of the field momentum of the two charges was
given by Page and Adams [37].16

11The field momentum can be computed by a third method, apparently first noted by Furry [28] (see also
[27]), PEM =

∫
V (C)J dVol/c2, where V (C) is the scalar potential in the Coulomb gauge and J is the electric

current density. This form is not particularly efficient in deducing eq. (7), but it reinforces the impression
that the field momentum is associated with the magnetic dipole.

12The provocative term “hidden” momentum was introduced by Shockley [30].
13For Thomson’s particular example, the magnetic moment drops to zero while the static electric field of

the charge is unchanged. In this case, the “overt” mechanical momentum of the dipole changes according
to dpm,overt/dt = −ṁ ×E/c (see, for example, sec. IV of [31], the last line on p. 53 of [32]) and sec. 2.5 of
[33]), so the final “overt” momentum of the dipole is pm,overt = m × E/c which equals the initial “hidden”
mechanical momentum of the magnetic dipole in the electric field [28]. Meanwhile, the falling magnetic
moments leads to an induced electric field at the charge q, such that the force on the charge is F = qEind =
−q∂A/∂ct = −q ṁ × r/cr3 = ṁ × E/c = −dpm,overt/dt. The final (“overt”) momentum of the charge is
pq = −m × E/c = −pm,overt, so the final, total momentum of the system is also zero.

14A loop of area A that carries current I has magnetic moment m = IA/c, so the field momentum (7) is
an effect of order 1/c2.

15For comments on the character of this “hidden” momentum, see [36].
16This demonstration is also readily given using the Darwin Lagrangian for interacting charges, which is

accurate to order 1/c2 [38, 39].
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2.1.5 Slepian

In the late 1940’s J. Slepian, a senior engineer at Westinghouse, posed a series of delightful
pedagogic puzzles in the popular journal Electrical Engineering. One of these concerned how
a capacitor in a cylindrical magnetic field might or might not be used to provide a form of
rocket propulsion [40].

The current in Slepian’s example is sinusoidal at a low enough frequency that radiation
is negligible, so that system can be regarded as quasistatic. In this case, the electromag-
netic field momentum is always equal and opposite to the “hidden” mechanical momentum,
according to a general result of sec. 4.1.4 of [34]. Consequently, the Lorentz force on the
system associated with the E and B field induced by the oscillating B and E fields are
always equal and opposite to the “hidden” momentum forces associated with the oscillatory
“hidden” momentum, and the total momentum of the system remains constant (no rocket
propulsion).17

2.1.6 Cullwick

In the 1950’s, Cullwick [43, 44] considered an example somewhat related to that of Tuval
and Yahalom, namely an electric charge on the axis of a toroidal magnet. Cullwick noted
that this example is paradoxical because no force is exerted on the moving charge when
the current is constant in the toroid,but the moving charge exerts a nonzero force on the

17For additional discussion, see [42].
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toroid.18

In the quasistatic limit, Cullwick’s paradox is resolved by noting that the unbalanced
force is equal and opposite to the time rate of change of the field momentum [48].

2.2 Two Time-Dependent Electrical Circuits

The force of circuit 1 that carries current I1(t), approximated as uniform around the circuit,
on another circuit 2 that carries current I2(t) is given at time t by the generalized Biot-Savart
law19 (in Gaussian units) as,

F21(t) =

∮
I2(t) dl2

c
×
(∮

I1(t − r/c) dl1 × r̂

cr2
+

∮
I

(1)
1 (t− r/c) dl1 × r̂

c2r

)
, (8)

where I (n)(t) = dnI(t)/dt2, r is the vector from element dl2 to element dl1, and we suppose
the circuits are massive enough that they do not change shape (or move as a whole) during
the time interval of interest.

We follow Tuval and Yahalom [1] in expanding the (retarded) current as,

I(t− r/c) =

∞∑
n=0

I (n)(t)

n!

(−r

c

)n

, (9)

such that,

F21(t) =

∮
I2(t) dl2

c
×
(∮ ∞∑

n=0

I
(n)
1 (t)

n!

(−r

c

)n
dl1 × r̂

cr2
+

∮ ∞∑
n=0

I
(n+1)
1 (t)

n!

(−r

c

)n
dl1 × r̂

c2r

)

=

∮
I2(t) dl2

c
×
(∮ ∞∑

n=0

I
(n)
1 (t)

n!

(−r

c

)n
dl1 × r̂

cr2
−
∮ ∞∑

n=1

I
(n)
1 (t)

(n − 1)!

(−r

c

)n
dl1 × r̂

cr2

)
(10)

= I1(t)I2(t)

∮ ∮
dl2 × (dl1 × r̂)

c2r2
−

∞∑
n=2

n − 1

n!
I

(n)
1 (t)I2(t)

∮ ∮ (−r

c

)n
dl2 × (dl1 × r̂)

c2r2
.

The first term of the last line of eq. (10) is the instantaneous static force, so the time-
dependent force departs from this only if current 1 is nonlinear with time.

A famous result (known to Ampère) is that ∇rm+1 = (m + 1)rm r̂, so that,∮ ∮
rm dl2 × (dl1 × r̂) =

∮ ∮
rm(dl1 · dl2) r̂ −

∮
dl1

∮
dl2 · rm r̂

=

∮ ∮
rm(dl1 · dl2) r̂ −

∮
dl1

∮
dl2 · ∇rm+1

m + 1

=

∮ ∮
rm(dl1 · dl2) r̂. (11)

18This paradox was revived in [45, 46, 47], without reference to Cullwick.
19See, for example, [49], and eq. (5) of [50].

5



Thus, the force on circuit 2 can be written as,

F21(t) = I1(t)I2(t)

∮ ∮
(dl1 · dl2) r̂

c2r2
−

∞∑
n=2

n − 1

n!
I

(n)
1 (t)I2(t)

∮ ∮ (−r

c

)n
(dl1 · dl2) r̂

c2r2
. (12)

If we interchange indices 1 and 2, r → −r and the force on circuit 1 is,

F12(t) = −I1(t)I2(t)

∮ ∮
(dl1 · dl2) r̂

c2r2
+

∞∑
n=2

n − 1

n!
I

(n)
2 (t)I1(t)

∮ ∮ (−r

c

)n
(dl1 · dl2) r̂

c2r2
.(13)

The total force on the two circuits is,20

F(t) = F12(t) + F21(t) =
∞∑

n=2

n − 1

n!
[I1(t)I

(n)
2 (t)− I2(t)I

(n)
1 (t)]

∮ ∮ (−r

c

)n
(dl1 · dl2) r̂

c2r2
.(14)

If this force is to provide net momentum to the system (rocket propulsion), the time
integral of the total force must be nonzero. Supposing the currents have time dependence
only during the interval (t1, t2), the total mechanical momentum gained by the system is,

P =

∫ t2

t1

F(t) dt =
∞∑

n=2

n − 1

n!

∫ t2

t1

[I1(t)I
(n)
2 (t) − I2(t)I

(n)
1 (t)] dt

∮ ∮ (−r

c

)n
(dl1 · dl2) r̂

c2r2
.(15)

If we integrate by parts n times, noting that the time derivatives vanish at t1 and t2, we find
that, ∫ t2

t1

[I1(t)I
(n)
2 (t)− I2(t)I

(n)
1 (t)] dt = (−1)n

∫ t2

t1

[I
(n)
1 (t)I2(t)− I

(n)
2 (t)I1(t)] dt, (16)

which implies that this time integral vanishes for all even n. Hence, the net momentum gain
is,

P =
∞∑

n=3,odd

n − 1

n!

∫ t2

t1

[I1(t)I
(n)
2 (t) − I2(t)I

(n)
1 (t)] dt

∮ ∮ (−r

c

)n
(dl1 · dl2) r̂

c2r2
. (17)

Note that if one of the currents is constant in time (as would be the case of the equivalent
current associated with a permanent magnet), then the momentum gain is zero, although
the force F(t) is nonzero. That is, for constant I1, the time integrals become,∫ t2

t1

[I1(t)I
(n)
2 (t)− I2(t)I

(n)
1 (t)] dt = I1

∫ t2

t1

I
(n)
2 (t) dt = I1[I

(n−1)
2 (t2) − I

(n−1)
2 (t1)] = 0, (18)

since the time derivatives of I2 vanish at times t1 and t2. Hence, there can be no
momentum gain/rocket propulsion for the case of a time-dependent circuit plus
a permanent magnet.21

20If the currents vary sinusoidally as e−iωt, where ω = kc = 2πc/λ, then the total force is proportional to
|I1| |I2| /c2.

21(Jan. 22, 2022) The permanent magnet can be displaced from its original position during the time
interval during which a current exists in the other circuit, but the final velocity of the magnet is the same
as its initial velocity. This system could be termed a “motor” or “engine” in that motion does occur during
its operation, but it is not a “rocket”/“spaceship” (which has a high final speed after its fuel is expended).
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There can be a gain of mechanical momentum in the case of two time-dependent circuits,
each of whose time dependence has nonzero odd-order time derivatives, of order 3 or higher.
Yet, we expect by conservation of momentum that a system initial at rest cannot sponta-
neously take on momentum. Indeed, we expect that the gain of mechanical momentum of
the system is offset by an equal and opposite electromagnetic field momentum. In particular,
we note that a system of two circuits can be regarded as a pair of magnetic dipoles, which
form a magnetic quadrupole with a nonzero, time-dependent quadrupole moment. As noted
in sec. 71 of [51], a quadrupole moment emits radiation if its 3rd time derivative is nonzero.
Hence, we learn that if the 3rd-order integral is nonzero in the expression (17) for the gain in
mechanical momentum by the system, then this momentum is compensated by the emission
of momentum in the form of quadrupole radiation (and if the nth-order integral is nonzero,
then there exists nth-order multipole radiation of momentum).

Of course, as the system emits momentum in its multipole radiation, it also emits energy,
such that only a finite amount of energy and momentum can be radiated. Hence, the gain of
mechanical momentum by the system is finite, just as in rocket propulsion based on chemical
reactions.

In sum, the system of time-dependent circuits can serve as an “electromagnetic space-
ship”, with (weak) propulsion via the reaction to the radiation of momentum due to the
time-varying quadrupole (or higher) moment of the system).

2.3 The Spaceship as an Antenna Array

We have seen that if there is net momentum gain by a pair of time-dependent circuits (after
their time variation has ceased), this is associated with the radiation of momentum. Hence,
an alternative analysis is to compute the radiated momentum, and note that the mechanical
momentum gain is equal and opposite to this.

In general, computation of radiation by antenna systems are best performed numerically,
but analytic calculations are possible for some simple systems. In particular, if the two
circuits are small compared to the wavelength of the radiation, their electromagnetic fields
can be modeled as those of “point” dipoles, as first argued by Hertz [52].

The radiation field of a single, time-dependent “point” dipole has sufficient symmetry
that while energy is radiated, no momentum is radiated. Hence, the case of a single time-
dependent circuit/dipole plus a permanent magnet [2] (which latter does not radiate) emits
no momentum, and there can be no net mechanical force on this system.22,23

A system of two time-dependent circuits/dipoles can emit momentum, and can therefore
accrue a net mechanical momentum in reaction to this radiation. For this, the two circuits
should be arranged so that the radiation pattern is asymmetric.

22The electromagnetic spaceship of Slepian, sec. 2.1.5, operated a low frequency, is a variant of a small
dipole antenna, and so does not emit momentum even if radiation is taken in to account. Hence, Slepian
was correct in arguing that this device does not serve as a spaceship, even in principle.

23If the second circuit were just a conducting loop, with no current except that induced by the first circuit,
this “loop Yagi” antenna [53] would radiate momentum, and could serve as an electromagnetic spaceship.

A variant on an antenna-based spaceship is to keep the drive antenna/laser on the Earth, and have only
a passive reflector on the spaceship. This configuration becomes very efficient as the spaceship approaches
the speed of light [54].
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A simple example of this has been discussed in [55], in which the dipoles have oscillatory
currents with angular frequency ω, and are arrayed λ/4 = πc/2ω apart, and driven with
their currents 90◦ out of phase. Then the pattern of radiated energy has the form,

d 〈U〉
dΩ dt

=
|[m̈] × r̂|2

8πc3
=

ω4m2
0 sin2 θ

4πc3

(
1 + sin

π

2
cos θ

)
, (19)

where m0 is the magnitude of the magnetic dipole moment of the two circuits/antennas.
This angular distribution is sketched in the figure on the next page. More energy is radiated
into the forward hemisphere (z > 0) than the backward.

The total radiated energy is obtained by integration of eq. (19) over solid angle,

d 〈U〉
dt

=

∫
d 〈U〉
dΩ dt

dΩ =
2ω4m2

0

3c3
. (20)

Associated with the radial flow of energy 〈U〉 in the far zone is a radial flow of momen-
tum,24 〈P〉 = 〈U〉 r̂/c. Hence, the angular distribution of time-average momentum radiated
by the antenna follows from eq. (19) as,

d 〈P〉
dΩ dt

=
ω4m2

0 sin2 θ

4πc4

(
1 + sin

π

2
cos θ

)
r̂. (21)

On integrating this over solid angle to find the total momentum radiated, only the z
component is nonzero,

d 〈P〉z
dt

= 2π
ω4m2

0

4πc4

∫ 1

−1

sin2 θ
[
1 + sin

(π

2
cos θ

)]
cos θ d cos θ

=
4ω4m2

0

π2c4

∫ π/2

0

x

(
1 − 4x2

π2

)
sinx dx where x =

π

2
cos θ

=
8ω4m2

0

π2c4

(
12

π2
− 1

)
=

12

π2c

d 〈U〉
dt

(
12

π2
− 1

)
≈ 0.26

c

d 〈U〉
dt

. (22)

24This is the classical version of the quantum relation for photons that U = �ω and P = �k = �ω k̂/c =
U k̂/c.
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The radiation reaction force on the antenna is Fz = −dPz/dt.25 For a broadcast antenna
radiating 105 Watts, the reaction force would be only ≈ 10−4 N.

An array of many dipole circuits/antennas along a common axis, and properly phased,
can have a narrower radiation pattern than that found above, such that d 〈P〉z /dt ≈
(1/c)d 〈U〉 /dt. A laser beam also has this maximal relation between radiated momentum
and energy.

Electromagnetic spaceships have rather low thrust in practice, and their minimum ratio
of power to thrust is (dU/dt)/(dP/dt) = c = 3 × 108 W/N. Low-thrust devices find appli-
cation as correction elements on satellites, but an electromagnetic/photon “rocket” is not
particularly favorable compared to Hall-effect thrusters [56], for which the power-to-thrust
ratio is of order 104 W/N.

For a review of efforts on “photon rockets”, see [57].
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