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1 Problem

Discuss the electromagnetic waves that can propagate in the space around a transmission
line whose form is a double helix of radius a and longitudinal period p ≈ a. The pitch angle
ψ of the helical windings with respect to the transverse planes is given by,

cotψ = kpa =
2πa

p
. (1)

The angle θ of the windings with respect to the axis of the line is then θ = π/2 − ψ, i.e.,

tan θ = kpa. (2)

Such lines are extensively used for telephone communication at low frequencies for which
ka, kp � 1, where k = 2π/λ = ω/v is the wave number at angular frequency ω, and v is
the wave velocity. For the case that ka, kp � 1 the waves can be thought of following the
helical conductors such that the group velocity along the axis of the helix is,

vg,z ≈ c cos θ. (3)

Show that even at low frequencies eq. (3) is a reasonable approximation when a ≈ p, but
when a � p (a gentle twist) then vg,z ≈ c

√
cos θ.
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2 Solution

Despite the common use of twisted-pair transmission lines, this problem seems little dis-
cussed in the literature. In the case of two-dimensional conductors there exist transverse
electromagnetic (TEM) waves of the form ei(kz−ωt) times the (transverse) static electric and
magnetic field patterns. However, TEM waves will not propagate along a twisted pair of
wires, whose structure is three-dimensional.

Waves on a single helical conductor have been discussed in the context of traveling-wave
amplifiers in the “sheath” approximation [1, 2], where only the part of the waves that are
independent of azimuth are analyzed. A fairly general discussions of waves on twisted-pair
conductors for ka ≈ kp ≈ 1 has been given in [3], again in the context of traveling-wave
amplifiers.1,2

Here, we emphasize the low-frequency behavior, when ka, kp� 1.

2.1 General Form of the Fields in Cylindrical Coordinates

We use a cylindrical coordinate system (r, φ, z) whose axis is that of the transmission line.
We ignore the insulation typically found on the wires of a twisted-pair line, and assume that
the space outside the wires is vacuum.

The electromagnetic fields E and B with time dependence e−iωt satisfy the vector Helmholtz
equation,

(∇2 + k2
f )E,B = 0, (4)

outside the wires, where,

kf =
ω

c
=

2π

λf
. (5)

However, in cylindrical coordinates only their z-components satisfy the scalar Helmholtz
equation,3

(∇2 + k2
f )Ez, Bz = 0. (6)

We look for wavefunctions for Ez and Bz that propagate in the z-direction with the form,

fm(r) e−imφ ei(kmz−ωt), (7)

where m is an integer. The (right-handed) helical conductor rotates by φ = kpz = 2πz/p as
z increases, so we expect the wavefunction (7) to include this symmetry via a phase factor
e−im(φ−kpz) such that the waveform rotates as it advances. The z-dependent part of this
phase contributes to the wave number km, which takes the form,4

km = k0(ω) +mkp. (8)

1See [4] for the case of cross-wound helices.
2The magnetic fields of twisted pairs have been discussed in [5, 6, 7, 8]. Twisted-pair structures with

large currents are used as undulators to generate energetic photon beams at particle accelerators (see, for
example, [9]).

3See, for example, p. 116 of [10] or Appendix A, p. 6 of [11].
4The present case contrasts with that of so-called Bessel beams of order m (see, for example, the Appendix

of [12]) where the drive currents are limited to a small region in z, rather than being periodic in z, such that
km = k0 for any index m.
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We are mainly interested in waves that propagate in the +z direction, for which the index
m must be non-negative at low frequencies where 0 < k0 � kp.

5

The phase ϕm of the wave function (7) is ϕm = k(m) · x − ωt = kmz −mφ − ωt, where
the wave vector k(m) is given by,

k(m) = ∇ϕm = km ẑ − m

r
φ̂. (9)

The phase velocity vp,m of a partial wave of index m is,

vp,m =
ω

k(m)
k̂(m) =

ckf

k2
m +m2/r2

(
km ẑ − m

r
φ̂

)
. (10)

We expect that k0
<∼ kf (� kp) so that vp,0

<∼ c ẑ, but for nonzero index m we have that
km ≈ mkp, and hence,

vp,m ≈ ckf r

m[1 + (kp r)2]

(
kp r ẑ − φ̂

)
, (11)

which is small compared to c at any value of r. The wave vector k(m) (and the phase velocity
vp,m) make angle θk to the z-axis given by,

tan θk = − 1

kp r
(12)

for any nonzero index m. Note that at r = a the wave vector is at right angles to the
direction of the helical windings, for which tan θ = kpa.

The group velocity of a partial wave is,6

vg,m = ∇k(m) =
∂ω

∂k(m)
, (13)

whose only nonzero component is,

vg,m,z =
dω

dk
(m)
z

=
dω

dkm

≈ 1

dkm/dω
=

1

dk0/dω
= vg,0,z ≡ vg,z, (14)

independent of index m. We expect that vg,z
<∼ c in the low-frequency limit.

Using eqs. (7)-(8) in the Helmholtz equation (6), we see that the radial function fm obeys
the Bessel equation,

1

r

d

dr

(
r
dfm

dr

)
−

(
k2

m − k2
f +

m2

r2

)
f = 0, (15)

where |km| ≥ k0 > kf . The solutions to eq. (15) should remain finite at r = 0 and ∞, so for
r < a we use the modified Bessel function Im(k′mr), and for r > a we use Km(k′mr), where,

k′m =
√
k2

m − k2
f . (16)

5Waves with index m negative (both for single helix and double-helix configurations) have their phase
and group velocities in opposite directions. An application of such waves is the backward wave oscillator. See,
for example, [13].

6See, for example, sec. 2.1 of [15].
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That is, the longitudinal components of the electric and magnetic fields outside the wires
have the forms,

Ez(r < a) =
∑
m

Em
Im(k′mr)
Im(k′ma)

e−imφ ei(kmz−ωt), Ez(r > a) =
∑
m

Em
Km(k′mr)
Km(k′ma)

e−imφ ei(kmz−ωt),

(17)

Bz(r < a) =
∑
m

Bm
Im(k′mr)
I ′m(k′ma)

e−imφ ei(kmz−ωt), Bz(r > a) =
∑
m

Bm
Km(k′mr)
K ′

m(k′ma)
e−imφ ei(kmz−ωt),

(18)
where Bm and Em are constants to be determined, and I ′m(k′ma) = dIm(k′ma)/dr. In eq. (17)
we have noted that the Maxwell equation ∇×E = ikfB (in Gaussian units) implies that Ez

(and Eφ) is continuous across the surface r = a. We verify later that the normalization of
coefficients Bm to I ′m(k′ma) and K ′

m(k′ma) insures continuity of the magnetic field component
Br across this surface, as required by the Maxwell equation ∇ ·B = 0.

The waves are driven by the current density J in the twisted pair, which we can write as,

J(x, t) = J(φ, z, t)δ(r − a)(sin θ φ̂ + cos θ ẑ), (19)

which points along the local direction of the twisted-pair conductors, and is confined to a
thin cylinder of radius a. The wavefunction J(φ, z, t) must have the same dependence on φ,
z and t as eqs. (17)-(18), namely,

J(φ, z, t) =
∑
m

Jm e
−imφ ei(kmz−ωt), (20)

assuming that the current only flows in the direction of the helical windings.
For a twisted pair, the current at fixed z and azimuth φ+π is opposite to that at azimuth

φ, which implies that Jm is nonzero only for odd m
In the case of a pair of wires of small diameter, the expansion (20) has contributions from

all odd integers m. We will make a simplifying assumption that only the term m = 1 is
important, which corresponds to replacing the helical wires by a pair of helical wire bundles,
each of which extends over Δφ = π, such that the current in the bundles at fixed z varies as
cosφ. If the peak current in each wire is I , then,

J(φ, z, t) =
I

2a cos θ
e−iφ ei(k1z−ωt), (21)

Ez(r < a) = E1
I1(k

′
1r)

I1(k′1a)
e−iφei(k1z−ωt), Ez(r > a) = E1

K1(k
′
1r)

K1(k′1a)
e−iφei(k1z−ωt), (22)

and

Bz(r < a) = B1
I1(k

′
1r)

I ′1(k
′
1a)

e−iφ ei(k1z−ωt), Bz(r > a) = B1
K1(k

′
1r)

K ′
1(k

′
1a)

e−iφ ei(k1z−ωt). (23)

To deduce the other field components from the forms (17)-(18) it is useful to note that
the electromagnetic fields can also be derived from from electric and magnetic Hertz vectors
ZE and ZM (also called polarization potentials; see, for example, sec. 1.11 and chap. 6 of [16]),
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each of which has only a z-component. These Hertz scalars, which we call ZE and ZM , obey
the scalar Helmholtz equation, (∇2 + k2

f )ZE , ZM = 0, outside the wires. Thus, the Hertz
scalars also have the forms (22)-(23), and we will verify that,

ZE = −Ez

k′1
2 , ZM = −Bz

k′1
2 . (24)

The scalar and vector potentials V and A are related to the Hertz vectors according to,

V = −∇ ·ZE , A =
1

c

∂ZE

∂t
+ ∇ ×ZM , (25)

and hence the electric and magnetic fields E and H are given by,

E = ∇(∇ · ZE) − 1

c2
∂2ZE

∂t2
− 1

c
∇ × ∂ZM

∂t
, B =

1

c
∇ × ∂ZE

∂t
+ ∇ × (∇ × ZM). (26)

The components of the electromagnetic fields in cylindrical coordinates in terms of the Hertz
scalars ZE and ZM are (see sec. 6.1 of [16] with u1 = r, u2 = φ, h1 = 1 and h2 = r),

Er =
∂2ZE

∂r∂z
− 1

cr

∂2ZM

∂φ∂t
, (27)

Eφ =
1

r

∂2ZE

∂φ∂z
+

1

c

∂2ZM

∂r∂t
, (28)

Ez = −1

r

[
∂

∂r

(
r
∂ZE

∂r

)
+

∂

∂φ

(
1

r

∂ZE

∂φ

)]
, (29)

Br =
∂2ZM

∂r∂z
+

1

cr

∂2ZE

∂φ∂t
, (30)

Bφ =
1

r

∂2ZM

∂φ∂z
− 1

c

∂2ZE

∂r∂t
, (31)

Bz = −1

r

[
∂

∂r

(
r
∂ZM

∂r

)
+

∂

∂φ

(
1

r

∂ZM

∂φ

)]
. (32)

For what it’s worth, the fields associated with ZE are transverse magnetic (TM), while those
associated with ZM are transverse electric (TE).

To use the forms (22)-(23) in eqs. (27)-(32), we note that,

I ′m(k′mr) = k′mIm−1 − mIm

r
= k′mIm+1 +

mIm

r
,

1

r

d[rI ′m(k′mr)]
dr

=

(
k′m

2
+
m2

r

)
Im, (33)

K ′
m(k′mr) = −k′mKm−1−mKm

r
= −k′mKm+1 +

mKm

r
,

1

r

d[rK ′
m(k′mr)]
dr

=

(
k′m

2
+
m2

r

)
Km,

(34)
so that for r < a the field components are,

Er = − 1

k′1
2

[
ik1E1

I ′1(k
′
1r)

I1(k
′
1a)

+
kf

r
B1
I1(k

′
1r)

I ′1(k
′
1a)

]
e−iφ ei(k1z−ωt), (35)
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Eφ = − 1

k′1
2

[
k1

r
E1
I1(k

′
1r)

I1(k′1a)
− ikfB1

I ′1(k
′
1r)

I ′1(k
′
1a)

]
e−iφ ei(k1z−ωt), (36)

Ez = −k′12
ZE = E1

I1(k
′
1r)

I1(k′1a)
e−iφ ei(k1z−ωt), (37)

Br =
1

k′1
2

[
kf

r
E1
I1(k

′
1r)

I1(k′1a)
− ik1B1

I ′1(k
′
1r)

I ′1(k
′
1a)

]
e−iφ ei(k1z−ωt), (38)

Bφ = − 1

k′1
2

[
ikfE1

I ′1(k
′
1r)

I1(k
′
1a)

+
k1

r
B1
I1(k

′
1r)

I ′1(k
′
1a)

]
e−iφ ei(k1z−ωt), (39)

Bz = −k′12
ZM = B1

I1(k
′
1r)

I ′1(k
′
1a)

e−iφ ei(k1z−ωt), (40)

and for r > a we have the forms (35)-(40) with the substitution I1 → K1.
We now see that the continuity of Eφ and Br across the surface r = a, as previously

mentioned, is satisfied by the above forms.

2.2 Determination of k0 and the Group and Signal Velocities

The current in the helical windings is assumed to flow only at angle θ with respect to
the z-axis, so that for good conductors the conductivity of the “wires” is “infinite” in this
direction, and zero in the perpendicular directions. Hence, the electric field on the surface
of the cylinder r = a must be perpendicular to the direction of the current, i.e.,

Eφ(r = a) = − cot θEz(r = a), (41)

and hence, (
k′1

2
a cot θ − k1

)
E1 + ikfaB1 = 0. (42)

Also, the tangential component of the magnetic field in the direction of the current must be
continuous at r = a, which implies that,

Bz(r = a−) + tan θBφ(r = a−) = Bz(r = a+) + tan θBφ(r = a+), (43)

and hence,

ikfaI
′
1(k

′
1a)K

′
1(k

′
1a)E1 +

(
k′1

2
a cot θ − k1

)
I1(k

′
1a)K1(k

′
1a)B1 = 0. (44)

For the simultaneous linear equations (42) and (44) to be consistent, the determinant of the
coefficient matrix must vanish, i.e.,(

k′1
2
a cot θ − k1

)2

= −(kfa)
2 I

′
1(k

′
1a)K

′
1(k

′
1a)

I1(k′1a)K1(k′1a)
. (45)

This determines k0 (and therefore k1 and k′1) in terms of a, p and kf .
We restrict our attention to low frequencies such that kfa � 1. In the limit that kf and

k0 vanish, then k1 = k′1 = kp and k2
pa cot θ − kp = 0, recalling that cot θ = 1/kpa, so that

eq. (45) is satisfied. For small kf and k0 we approximate,

k1 = kp + k0 ≈ kp

(
1 +

k0

kp

)
, k′1

2
= k2

1 − k2
f ≈ k2

p

(
1 + 2

k0

kp
− k2

f

k2
p

)
, (46)
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so that it suffices to take the arguments of the Bessel functions as kpa. Using these in eq. (45)
and recalling eqs. (33)-(34), we find,(

k0 −
k2

f

kp

)2

≈ k2
0 ≈ −(kfa)

2I
′
1(kpa)K

′
1(kpa)

I1(kpa)K1(kpa)
= k2

fC
2(kpa), (47)

where the constant C defined by,

C2(kpa) = −a2I
′
1(kpa)K

′
1(kpa)

I1(kpa)K1(kpa)
=

[kpaI0(kpa) − I1(kpa)][kpaK0(kpa) +K1(kpa)]

I1(kpa)K1(kpa)
(48)

is real and positive since K ′
1 is negative, as seen in the figure below, from p. 374 of [14].

For example, if θ = 45◦ then kpa = 1, and,

C2(1) ≈ [1.2 − 0.55][0.4 + 0.6]

0.55 · 0.6 ≈ 2, (49)

and C(1) ≈ 1.4.
For kpa� 1 (gentle twist) then I0(kpa) ≈ 1 + (kpa)

2/2, I1(kpa) ≈ kpa/2 + (kpa)
3/8, and

K1(kpa) � kpaK0(kpa), so we have,

C2(kpa� 1) ≈ kpaI0(kpa)

I1(kpa)
− 1 ≈ 1 + (kpa)

2/2 ≈ 1

cos θ
. (50)

From eq. (47), the wave number k0 is,

k0 ≈ Ckf = C
ω

c
. (51)
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Recalling from eqs. (8)-(9) that k(1) ≡ k = (k0 + kp) ẑ − φ̂/r, eq. (51) can be recast as the
dispersion relation,

ω = ω(k(1)) ≡ ω(k) ≈ c

C
k0 =

c

C

(
kz − kpr

r

)
=

c

C
(kz + kprkφ). (52)

Then, the group velocity vector (13) is,7

vg = ∇kω(k) =
∂ω

∂kz
ẑ +

∂ω

∂kφ
φ̂ ≈ c

C
(ẑ + kpr φ̂). (53)

While the z-component, vg,z of the group velocity is independent of radius r, the group
velocity vector vg makes angle θg to the z-axis given by,

tan θg ≈ kpr. (54)

At very small r the group velocity is essentially parallel to the z-axis, but at large r lines of
the group velocity form helices with very small pitch. The magnitude of the group velocity
is,

vg ≈ c

C

√
1 + (kpr)2, (55)

which exceeds c at large r. However, the signal velocity vs is clearly,

vs = vg,z =
c

C
< c. (56)

Comparing with eq. (12), we see that the group velocity vg is perpendicular to the phase
velocity vp, and that on the surface r = a the group velocity is along the direction of the
helical windings.

For θ = 45◦ we find that vg,z ≈ c/C ≈ 0.7c ≈ c cos θ for an uninsulated twisted-
pair transmission line. This happens to be close to the group velocity of typical insulated,
untwisted two-wire transmission lines!

For gently twisted, uninsulated pairs and low frequencies, eqs. (50) and (53) indicate that
vg,z ≈ c

√
cos θ.

2.3 Characteristic Impedance Z0 at Low Frequencies

To evaluate the characteristic impedance of the transmission line at low frequencies, we,consider
the radial electric field (35) for r < a, for which we need to know the constants B1 and E1

in terms of the (peak) current I in the windings.
We can relate B1 to the (peak) current I in the twisted pair via Ampère’s law for a small

loop of length dz in the r-z plane that surrounds a short segment of the conductor where
the current is maximal,

4π

c
Imax, through loop =

4π

c

π

p
I = |Bz(r = a−) − Bz(r = a+)| dz

≈ B1

(
I1(kpa)

I ′1(kpa)
− K1(kpa)

K ′
1(kpa)

)
dz. (57)

7The group velocity vector follows straight lines in homogenous media (see, for example, sec. 2.1 of [15]).
Because of the twisted conductors, the present problem is not one of a homogenous medium, and the group
velocity vector field need not have straight streamlines.
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That is,

B1 =
4π

c

π

p

−I ′1(kpa)K
′
1(kpa)

I ′1(kpa)K1(kpa)− I1(kpa)K ′
1(kpa)

I =
4π

c

kp

2a
C2DI, (58)

where,

D(kpa) =
1

a

I1(kpa)K1(kpa)

I ′1(kpa)K1(kpa) − I1(kpa)K ′
1(kpa)

=
I1(kpa)K1(kpa)

[kpaI0(kpa) − I1(kpa)]K1(kpa) + I1(kpa)[kpaK0(kpa) +K1(kpa)]
. (59)

Then, eqs. (42) and (51) tell us that,

E1 ≈ − ikfa

k0
B1 ≈ − ia

C
B1 = −4π

c

ikp

2
CDI. (60)

From eq. (35) we see that the radial electric field for r < a is largely due to the term in E1

since kf � k1 (at low frequencies). That is,

Er(r < a) ≈ − i

kp
E1
I ′1(kpr)

I1(kpa)
e−iφei(k1z−ωt) = −4π

c

CDI

2

I ′1(kpr)

I1(kpa)
e−iφei(k1z−ωt). (61)

The peak voltage difference between the opposing currents is therefore,

V = 2

∫ a

0

|Er| dr ≈ 4π

c
CDI = Z0I, (62)

where,
Z0 ≈ 377CDΩ. (63)

When θ = 45◦,

D ≈ 0.55 · 0.6
(1.2 − 0.44) · 0.6 + 0.55 · (0.4 + 0.6)

= 0.35, (64)

so that,
Z0(θ = 45◦) ≈ 377 · 1.4 · 0.35 = 185Ω. (65)

In practice, the wires of the twisted pair are insulated, which reduces the characteristic
impedance to ≈ 100Ω.

For gentle twists (kpa� 1) eq. (59) simplifies to,

D ≈ I1(kpa)

kpaI0(kpa)
≈ 1

2
, (66)

so that, recalling eq. (50),

Z0(θ ≈ 0) ≈ 189√
cos θ

Ω, (67)

little different from the value at θ = 45◦.
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2.4 Energy Flux, Momentum and Angular Momentum Density

At low frequencies where k′1 ≈ k1 ≈ kp � kf the electromagnetic fields for r < a follow
from eq. (35)-(40) using eqs. (58) and (60) for the constants E1 and B1 in terms of the peak
current I ,

Er ≈ −4π

c

CDI

2

I ′1(kpr)

I1(kpa)
e−iφ ei(kpz−ωt), (68)

Eφ ≈ 4π

c

iCDI

2r

I1(kpr)

I1(kpa)
e−iφ ei(kpz−ωt), (69)

Ez ≈ −4π

c

ikpCDI

2

I1(kpr)

I1(kpa)
e−iφ ei(kpz−ωt), (70)

Br ≈ −4π

c

iC2DI

2a

I ′1(kpr)

I ′1(kpa)
e−iφ ei(kpz−ωt), (71)

Bφ ≈ −4π

c

C2DI

2ar

I1(kpr)

I ′1(kpa)
e−iφ ei(kpz−ωt), (72)

Bz ≈ 4π

c

kpC
2DI

2a

I1(kpr)

I ′1(kpa)
e−iφ ei(kpz−ωt), (73)

and for r > a we have the forms (68)-(73) with the substitution I1 → K1.
The electric field components (68)-(70) have similar strength (in Gaussian units) to the

magnetic field components (71)-(73). The latter correspond to the m = 1 term in the series
expansions for the quasistatic magnetic fields given in [5]-[8].

The time-average Poynting vector 〈S〉 for r < a at low frequencies is,

〈S〉 =
c

8π
Re(E ×B�) =

c

8π
Re[(EφB

�
z −EzB

�
φ) r̂ + (EzB

�
r − ErB

�
z) φ̂ + (ErB

�
φ − EφB

�
r ) ẑ]

≈ 4π

c

C3D2I2

4a

I1(kpr)I
′
1(kpr)

I1(kpa)I ′1(kpa)

[
kp φ̂ +

ẑ

r

]
, (74)

and that for r > a is obtained from eq. (74) with the substitution I1 → K1.
At low frequencies there is no time-average flow of energy in the radial direction, and

hence no radiation is emitted by the transmission line.8

The energy-flow/Poynting vector (74) is in the same direction as the group velocity (53),
as generally expected.9 Lines of the Poynting flux 〈S〉 on the cylinder of radius r follow
helices that make angle,

θg ≈ tan−1 kpr (54)

to the z-axis, such that only at r = a does the energy flow in a helix whose angle matches
that of the windings, θ. At small r the (small) energy flows largely parallel to the axis. At
large r the angle θS approaches 90◦ and the Poynting vector is almost entirely transverse;
however because K1(kpr) → 0 at large r there is very little energy associated with these very
tight spirals.

8Even if we keep the smaller terms in Eφ and Bφ of eqs. (36) and (39) there is still no radiation emitted
by the transmission line at low frequencies.

9See, for example, sec. 2.1 of [15] and references therein.
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The Poynting vector is at right angles to the wave vector (9), whose angle θk to the z-axis
is given by eq. (12).

The Poynting vector plays the dual role of describing energy flux and momentum density,
where the latter is given by,

〈p〉 =
〈S〉
c2

(75)

in vacuum. The density l of angular momentum in the electromagnetic field is therefore,

〈l〉 = r × 〈p〉 = r × 〈S〉
c2

. (76)

On averaging over azimuth φ only the z-component of the angular momentum is nonzero,

〈l〉 =
4π

c

C3D2I2

4a

I1(kpr)I
′
1(kpr)

I1(kpa)I ′1(kpa)

kpr

c2
ẑ. (77)

Thus, the electromagnetic waves on a right-handed twisted-pair transmission line carry pos-
itive angular momentum. In a quantum view, the photons of the wave have angular momen-
tum � and energy �ω. Hence, we expect that 〈l〉 = (〈u〉 /ω) ẑ where 〈u〉 = (|E|2 + |B|2)/8π
is the time-average electromagnetic energy density. However, this relation is not self evident
given the description of the waves in terms of Bessel functions.

A Appendix: A Single Wire Helix

We can compare the twisted-pair transmission line to the case of a single helical wire [1, 2]
in the “sheath” approximation that the helical current flows at angle ψ uniformly over the
entire cylinder r = a, such that the current and fields have no azimuthal dependence. Then,
instead of eqs. (35)-(40) r < a, we now have,

Er = − ik1

k′0
2E0

I ′0(k
′
0r)

I0(k′0a)
ei(k0z−ωt), (78)

Eφ =
ikf

k′0
2B0

I ′0(k
′
0r)

I ′0(k
′
0a)

ei(k0z−ωt), (79)

Ez = E0
I0(k

′
0r)

I0(k′0a)
ei(k0z−ωt), (80)

Br = − ik1

k′1
2B0

I ′0(k
′
0r)

I ′0(k
′
0a)

ei(k0z−ωt), (81)

Bφ = − ikf

k′1
2E0

I ′0(k
′
0r)

I0(k′0a)
ei(k0z−ωt), (82)

Bz = B0
I0(k

′
0r)

I ′0(k
′
0a)

ei(k0z−ωt), (83)

and for r > a we have the forms (78)-(83) with the substitution I0 → K0.
The condition (41) now implies that,

k′0
2
E0 + ikf cotψB0 = 0. (84)

11



Similarly, the condition (43) implies that,

ikf cotψ I ′0(k
′
0a)K

′
0(k

′
0a)E0 + k′0

2
I0(k

′
0a)K0(k

′
0a)B0 = 0. (85)

The vanishing of the determinant of the coefficient matrix tells us that,

k′0
4

= −k2
f cot2 ψ

I ′0(k
′
0a)K

′
0(k

′
0a)

I0(k′0a)K0(k′0a)
= k′0

2
k2

f cot2 ψ
I1(k

′
0a)K1(k

′
0a)

I0(k′0a)K0(k′0a)
, (86)

recalling eqs. (33)-(34). That is,

k′0

√
I0(k′0a)K0(k′0a)
I1(k′0a)K1(k′0a)

= kf cotψ. (87)

At low frequencies such that kfa� 1 the factor involving Bessel functions in eq. (87) becomes
large, and k′0 � kf , as illustrated in the figure below, from [1].

Then, k0 =
√
k2

f + k′0
2 ≈ kf so that the phase velocity and group velocity are both very

close to c.
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