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1 Problem

Discuss the motion of a coiled sheet or tape as it unrolls on a horizontal surface, supposing
that there is no slipping, no springiness to the sheet, and no dissipation of energy during the
uncoiling.

2 Solution

If the coil of initial mass M and radius R starts from rest (given a tiny push to start the
motion), its center of mass falls as the coil unwinds, such that when the tape lies flat on the
table its gravitational potential energy has decreased by MgR, where g is the acceleration
due to gravity, and the tape ends up at rest on the horizontal support surface. This appears
to be a violation of conservation of energy, as noted in [1].

The resolution to this type of paradox was given in [2], where it was argued that the
velocity of the coil goes to infinity as its radius r goes to zero, and the kinetic energy MgR
of the coil just before it completely unwinds is dissipated in a final, inelastic collision with
the horizontal surface, accompanied in practice by a loud noise. See also [3, 4, 5].1

However, when we attempt a detailed analytic analysis of such examples, one is led
to approximate the coil as circular at all times, which requires continuous, instantaneous
redistribution of mass over the entire surface of the coil, generally leads to different equations
of motions via an energy analysis and via a force/torque analysis (neither of which are
accurate in such cases). Only examples in which the motion is for less than one full turn, as
in Appendices A and E, permit a more consistent, simple, analytic analysis.2

1For the case of uncoiling during vertical fall (yo-yo), see, for example, [6].
2For a related example of “coiling” of snow onto a rolling log, see [7].
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2.1 Energy Analysis

For the case of no slipping, the system has only one degree of freedom, so we seek a single
equation of motion. Prior to the final unwinding for the coil, we approximate energy as
conserved, which we use as the basis for an equation of motion.

We suppose the coil is made of a material of thickness b, with total mass M , initial outer
radius R, and (for simplicity) inner radius 0. At some time t the line of contact of the coil,
then with radius r < R, with the horizontal surface is at x, with the left end of the uncoiled
material at x = 0, as sketched below.

The mass of the coil is then m = Mr2/R2, and the moment of inertia of the coil about
its axis is I = mr2/2 = Mr4/2R2.

The no-slip condition can be expressed as,

πR2 = bx + πr2,
dx

dt
≡ ẋ = −2πr ṙ

b
, (1)

and the angular velocity ω of the rotating coil is related by,3

ω =
ẋ

r
= −2πṙ

b
. (2)

The kinetic energy the system is,4

T =
m(ṙ2 + ẋ2)

2
+

Iω2

2
=

Mr2ṙ2

2R2

(
1 +

4π2r2

b2

)
+

π2Mr4ṙ2

b2R2
=

Mr2ṙ2

2R2
+

3π2Mr4 ṙ2

b2R2

=
Mr2 ṙ2

2b2R2
(6π2r2 + b2). (3)

The gravitational potential energy of the system with respect to the horizontal support
surface is,

V = mgr =
Mgr3

R2
, (4)

ignoring the small potential energy Mb2xg/2R2 of the tape that lies on the horizontal surface.
The constant energy (prior to the final “big bang”) is,

E = T0 + V0 =
Mṙ2

0

2b2
(6π2R2 + b2) + MgR = T + V =

Mr2ṙ2

2b2R2
(6π2r2 + b2) +

Mgr3

R2
. (5)

The first term on the right side of eq. (5) is small compared to the second for r > b, such
that,

ṙ2 = ṙ2
0 +

2g b2R3

6π2r4 + b2r2

(
1 − r3

R3

)
≈ ṙ2

0 +
g b2R3

3π2r4

(
1 − r3

R3

)
, (6)

which indicates that ṙ (and ẋ) diverge as r goes to zero, as mentioned above.

3Formally, these relations are holonomic constraints.
4Care is required in evaluating the kinetic energy of a system that includes a variable mass, as noted in

[8], where a variant of the present example is discussed.
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We can differentiate eq. (5) with respect to time to obtain an equation of motion,

(6π2r2 + b2)rr̈ + (12π2r2 + b2)ṙ2 + 3b2gr = 0. (7)

Even in a zero-g environment, uncoiling is possible, provided the tape sticks to the horizontal
surface once it makes contact.

Furthermore,

rr̈ = − 3b2gr

6π2r2 + b2
− 12π2r2 + b2

6π2r2 + b2
ṙ2 ≈ − b2g

2π2r
− 2ṙ2

0 −
2g b2R3

3π2r4

(
1 − r3

R3

)
< 0. (8)

2.2 Forces and Torques

While the energy analysis seems satisfactory in leading to an equation of motion (in the
approximation of conservation of mechanical energy), it is difficult to reconcile the behavior
of the unwinding coil with a Newtonian analysis based on forces and torques. As the center
of the coil accelerates to the right, one associates this with a horizontal force F to the
right at the line of contact of the coil (and with a possible horizontal force Fint between the
portion of the tape on the horizontal surface and the portion in the coil just above the line
of contact). Meanwhile, the angular momentum of the coil is increasing in a clockwise sense,
which requires a clockwise torque, which seems to require the horizontal force to the left.

There must also be a vertical (normal) force Ntot, at the interface between the coiled and
horizontal portions of the tape, due to the effect of horizontal support surface on the coil at
the line of contact of the coil with the horizontal surface, as well as a possible shear force
between the portion of the tape on the horizontal surface and the portion in the coil. We
can compute the vertical (constraint) force on the coil via the vertical-momentum equation,
also using eqs. (6) and (8),

Ntot − mg =
dPy

dt
=

d

dt
(mṙ) =

d

dt

(
Mr2ṙ

R2

)
=

Mr

R2
(2ṙ2 + rr̈)

≈ −Mrṙ2
0

R2
− Mgb2

2π2R2
= −Mrṙ2

0

R2
− mg

b2

2π2r2
, (9)

Ntot ≈ −Mrṙ2
0

R2
+ mg

(
1 − b2

2π2r2

)
≈ −Mrṙ2

0

R2
+ mg. (10)

Note that if g = 0, then the normal force N must be negative, and is then a shear force
inside the tape just above the line of contact, rather than being a contact force with the
horizontal surface. In this case, N is not a constraint force in the sense of Lagrange, but is
an internal force between horizontal and coiled portions of the tape.

When considering the horizontal constraint force F at the line of contact, we must note
that there is also a horizontal, internal force Fint .

The horizontal momentum-equation involves the sum of these two forces,

Ftot = F + Fint =
dPx

dt
=

d

dt
(mẋ) = − d

dt

(
2πMr3ṙ

bR2

)
= −2πMr2

bR2
(3ṙ2 + rr̈)

≈ Mgb

3πr2R2
(5r3 − 2R3), (11)
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again using eqs. (6) and (8) in the approximation that r � b. This force is initially in the
+x direction, but changes sign when r ≈ 3

√
2/5)R ≈ 0.74R.

Qualitatively, as the coil first begins to unwind, its center of mass moves to larger x,
so if there were no horizontal force Ftot, the coil would slide to smaller x to keep the x-
coordinate of the c.m. fixed. The horizontal force F|rmtot opposes this tendency, and hence
is in the positive x-direction initially. However, at later times, as the angular velocity of
the unwinding coil increases, the linear momentum of the coil increases, and the coil would
tend to slide towards more positive x-values, if there were no horizontal force at the line of
contact. Thus, at later times, the horizontal force points in the negative x-direction.

We can also consider the torque equation for angular momentum LO of the entire tape
about the origin (at the left end of the tape at rest on the horizontal surface),5

τ O =
dLO

dt
, (12)

where τ O =
∑

i xi × Fext,i is the torque about the origin due to external forces (which here
include constraint forces) applied at positions xi.

The angular momentum of the system is only due to the motion of the coil, and can be
written as the sum of the angular momentum Lcoil cm = −Iω ẑ of the coil about its own
center of mass plus the angular momentum of the motion of the center of mass of the coil
(at x x̂ + r ŷ) relative to the origin,

Lof cm of coil,O = x x̂ + r ŷ × M
r2

R2
(ẋ x̂ + ṙ ŷ) = M

r2

R2
(ṙx − ẋr) ẑ

= M
r2

R2

(
ṙ
π(R2 − r2)

b
+

2πr2ṙ

b

)
ẑ = M

πr2ṙ

bR2
(R2 + r2) ẑ, (13)

LO = Lcoil cm + Lof cm of coil,O = M
r4

2R2

2πṙ

b
ẑ + M

πr2ṙ

bR2
(R2 + r2) ẑ

= M
πr2ṙ

bR2
(R2 + 2r2) ẑ, (14)

dLO

dt
= M

π(r2r̈ + 2rṙ2)

bR2
(R2 + 2r2) ẑ + M

πr2ṙ

bR2
4rṙ ẑ

=
Mπr

bR2

[
rr̈(R2 + 2r2) + 2ṙ2(R2 + 4r2)

]
ẑ. (15)

The (external) forces that contribute to the torque τO are −mg ŷ on the center of mass of
the coil at (x, r), F x̂ and N ŷ on the line of contact at (x, 0) of the coil with the horizontal
surface, and the forces ±(M −m)g ŷ on the tape at rest on the horizontal surface. The latter
two forces act at (x/2, 0) and (x/2, b/2), and lead to no net torque about the origin. Then,
the torque is,

τ O = (x x̂ + r ŷ) ×−mg ŷ + (x x̂ + 0 ŷ) × (F x̂ + N ŷ)

= (N −mg)x ẑ =
Mπr

bR2
(2ṙ2 + rr̈)(R2 − r2) ẑ. (16)

5It is problematic to consider a torque equation for a variable-mass system such as the coil.
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Equating (15) and (16), we have,

3rr̈ + 10ṙ2 = 0. (17)

It is noteworthy that the force/torque method has led to an equation of motion (17) that
does not include gravity, and differs from eq. (7) which followed from conservation of energy.
However, the term in g in eq. (7) is proportional to b2, which is of second-order of smallness.
So, unless our model of the coil is accurate to order b2, which is doubtful, the preceeding
analysis could be unreliable. Since gravity plays some role in the uncoiling (which could
still occur in zero gravity), the energy analysis is likely more accurate than the force/torque
analysis.

Appendix A considers the case that the “coil” is only a single turn of tape on a massless
spool. Here, the geometry is more precisely defined, and both the energy analysis and the
force/torque analysis lead to the same equation of motion.

2.3 A Lagrangian Analysis

We can analyze the system as a whole via Lagrange’s method, with Lagrangian L = T − V
using the kinetic energy of eq. (3), the potential energy of eq. (4) and the coordinate as r.
Then, the equation of motion is again eq. (7) as found above.

2.3.1 Constraint Forces

We can deduce the constraint forces via a Lagrangian method in which more than the
minimum number of coordinates are used, as apparently first proposed by Routh [20, 21]
for holonomic constraints,6 as a special case of a method for problems with nonholonomic
constraints given by Ferrers [23]. See also [24].

In this method, the minimum number n of independent coordinates is augmented with
m additional coordinates, so that the total set of coordinates is qi, i = 1, . . . , n + m, and
for which the m constraint equations fj(qi) = 0, j = 1, . . . , m, are known, but not explicitly
enforced initially. Then, we consider the n + m modified Lagrange equations,

d

dt

∂L
∂q̇i

− ∂L
∂qi

=

m∑
j=1

λj
∂fj

∂qi
, (18)

where the λj are so-called Lagrange multipliers (which have the physical significance of being
the constraint force Fj if the dimensions of the constraint equation fj = 0 are chosen to be
length).

2.4.1.1 Vertical Constraint Force

When considering the vertical (normal) constraint force N at the line of contact of the
coil with the horizontal surface, it is appropriate to discuss the constraint that the vertical
coordinate of the horizontal surface is, say, ys = 0. In the language of the method of Lagrange
multipliers, we can say that a third constraint is,

f3 = ys = 0. (19)

6The term holonomic was introduced by Hertz on p. 91 of [22].
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We now consider the entire system of the coil plus its unwound portion to be described
by two coordinates, r and ys.

The constraints (1) and (2) still hold.
Then, the kinetic energy of the system is,

T =
m[ẋ2 + (ṙ + ẏs)

2]

2
+

Iω2

2
=

Mr2

2R2

(
4π2r2ṙ2

b2
+ ṙ2 + 2ṙẏs + ẏ2

s

)
+

3π2Mr4ṙ2

b2R2
. (20)

The gravitational potential is now,

V = M

(
1 − r2

R2

)
gys + M

r2

R2
g(ys + r). (21)

We now deduce the equation of motion for coordinate ys via eq. (18), including a single
Lagrange multiplier λ3 associated with f3 of eq. (19).7 First,

d

dt

∂T

∂ẏs
− ∂T

∂ys
=

M

R2
[r2(r̈ + ÿs) + 2rṙ(ṙ + ẏs)],

∂V

∂ys
= Mg, (22)

and the equation of motion is,

M

R2
[r2(r̈ + ÿs) + 2rṙ(ṙ + ẏs)] + Mg = λ3. (23)

We can now enforce the constraint (19), i.e., that ẏs = 0 = ÿs, in which case eqs. (6) and
(8) hold. Then, the horizontal constraint force for the entire system is given by, for r � b,

λ3 =
Mr

R2

(
2ṙ2 + rr̈

)
+ Mg ≈ Mg − Mgb2

2π2R2
= Mg − mg

b2

2π2r2
. (24)

However, we are interested in the normal force N on the coil, whereas eq. (24) includes the
normal force on the mass M − m that lies flat on the horizontal surface. That is,

N = λ3 − (M − m)g ≈ mg

(
1 − b2

2π2r2

)
≈ mg . (25)

Thus, the constraint force N is the part of the normal force Ntot previously found in eq. (10)
that depends on g.

2.4.1.2 Horizontal Constraint Force

A Lagrangian analysis can provide information about the horizontal constraint force F
of the horizontal support surface on the coil, if we relax the no-slip constraint (1), we which
rewrite, with dimensions of length so that the corresponding Lagrange multiplier will have
dimensions of force, as,

f1(r, x) = x +
π

b
(r2 − R2) = 0, (26)

7Alternatively, we could deduce the equation for coordinate r, as only one of the two equations will be
needed.
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and consider the entire system of the coil plus its unwound portion to be described by two
coordinates, r and x.

Constraint (2) still holds, in the form that ω = −2πṙ/b. The unwound portion of the tape,
of mass M(1−r2/R2), now slides on the horizontal surface with velocity ẋ−r ω = ẋ+2πrṙ/b.

Then, the kinetic energy of the system is,

T = M

(
1 − r2

R2

)
(ẋ + 2πrṙ/b)2

2
+

m(ṙ2 + ẋ2)

2
+

Iω2

2

= M
ẋ2 + r2ṙ2

2
+

2πMrṙẋ

b

(
1 − r2

R2

)
+

π2Mr2ṙ2

b2

(
2 − r2

R2

)
. (27)

The potential V is again given by eq. (4).
We now deduce the equation of motion for coordinate x via eq. (18), including a single

Lagrange multiplier λ1 associated with f1 of eq. (26).8

For coordinate x,

d

dt

∂T

∂ẋ
− ∂T

∂x
= Mẍ +

2πMrr̈

b

(
1 − r2

R2

)
+

2πMṙ2

b

(
1 − 3r2

R2

)
,

∂V

∂x
= 0, (28)

and the equation of motion is,

Mẍ +
2πMrr̈

b

(
1 − r2

R2

)
+

2πMṙ2

b

(
1 − 3r2

R2

)
= λ1. (29)

We can now enforce the constraint (26), i.e., ẍ = −2π(rr̈ + ṙ2)/b, in which case eqs. (6)
and (8) hold. Then, the horizontal constraint force F is given by, for r � b,

F = λ1 = −2πMr3r̈

bR2
− 6πMr2 ṙ2

bR2

≈ −2πMr2

bR2

[
b2g

2π2r
+

2g b2R3

3π2r4

(
1 − r3

R3

)]
− 6πMr2

bR2

g b2R3

3π2r4

(
1 − r3

R3

)

≈ Mgb

3πr2R2

(
7r3 − 10R3

)
, (30)

which differs from both eqs. (11) for Ftot.

2.4 Lagrangian Analysis of the Coil Only

If we regard the system of interest as only the coil, then the problem is one of variable mass.
A Lagrangian approach to variable-mass problems has been given in [10, 11].9

This method considers the kinetic energy T (qk, q̇k, t) (but not the potential energy) of
a system described by coordinates qk, and supplements the generalized forces of Lagrange

8Alternatively, we could deduce the equation for coordinate r.
9Use of this approach by the author appears in Appendix B of [15] to a leaky tank at rest (Torricelli’s

problem), in sec. 2.2 of [16] to a leaky bucket suspended from a spring, in Appendix A of [17] to a rolling
water pipe, and in Appendix B of [18] to a leaky tank car.
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with additional terms, related to a so-called control volume whose velocity is w, according
to eq. (5.6) of [10] and eq. (1) of [11],

d

dt

∂Tw

∂q̇k
− ∂Tw

∂qk
+

∫
∂T̃

∂q̇k
(v − w) · dArea−

∫
T̃

∂(v −w)

∂q̇k
· dArea = Qk, (31)

where Tw is the kinetic energy within the control volume, T̃ is the kinetic energy per unit
volume, v is the velocity of the material at a point in the system, and the generalized forces
Qk are related to the external forces on the system by,10

Qk =
∑

i

Fext
i · ∂ri

∂qk
=
∑

i

Fext
i · ∂ṙi

∂q̇k
(32)

supposing the system to consist of particles with mass mi at positions ri subject to external
forces Fext

i . The forms (32) followed from arguments by d’Alembert [14]. If the external
forces are deducible from potentials, Fi = −∂Vi/∂ri, then the first form of eq. (32) simplifies
to,

Qk = −∂V

∂qk
, (33)

where V =
∑

i Vi.
In the present example we take the variable-mass system to be the coil, which system

can be characterized by a single coordinate, r = radius of the coil (as in the figure on p. 1).
The external force on the coil is −mg ŷ = Mgr2 ŷ/R2, which can be related to a potential

V = mgr = Mgr2/R2. Then, according to eq. (33), the generalized force is,11

Qr = − ∂

∂r

Mgr3

R2
= −3Mgr2

R2
= −3mg. (34)

However, if we use the first form of eq. (32), and note that the locations ri of particles of
the coil do not depend directly on coordinate r, we would have that Qr = 0. If if we use the
second form of eq. (32), the velocities of a particles in the coil with cylindrical coordinates
(r′i, θi, zi) with respect to the axis of the coil have velocities r′iθ̇i θ̂i = r′iθ̇i(− cos θi x̂+sin θi ŷ)
where the y-axis is upwards, θ increases clockwise from the line of contact of the coil with the
horizontal surface, and θ̇i = θ̇ = −2πṙ/b, according to eq. (2). Then, in the sum of particles
i the terms in cos θi and sin θi average to zero, and the generalized force is zero according to
the second form of eq. (32). That is, use of either of the forms of eq. (32) for this example
would imply that there is no dependence of the motion on the acceleration g due to gravity.
So, we infer that we must use eq. (34) here.12

We take the surface of the control volume to be just outside the physical surface of the
coil. The velocity of the control volume is then w = ẋ.

10We recall that Lagrange’s method distinguishes between external and constraint forces. In the present
example, the forces at the line of contact of the coil with the horizontal surface are constraint forces, and so
are not included in the computation of the generalized force.

11Note that the generalized force (34) does not equal the normal force (instantaneous weight, ≈ mg) on
the coil that was found in eq. (10).

12For another example in which use eq. (34) is preferred, see [15].
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The kinetic energy within the control volume is, as in eq. (3),

Tw =
Mr2 ṙ2

2R2
+

3π2Mr4 ṙ2

b2R2
. (35)

There is no matter of the system on the surface of the control volume, except at its
interface with the portion of the tape at rest on the horizontal surface. The velocity v of
the matter is zero on this surface, as is the kinetic energy per unit volume T̃ there.

From the kinetic energy (35) we have,

d

dt

∂Tw

∂ṙ
− ∂Tw

∂r
=

Mr

R2
(rr̈ + 2ṙ2) +

6π2Mr3

b2R2
(4ṙ2 + rr̈) − Mrṙ2

R2
− 12π2Mr3ṙ2

b2R2
. (36)

Since T̃ = 0 on the surface of the control volume, the integrals in T̃ do not contribute to
the equation of motion.

Altogether, the equation of motion for coordinate r, according to eq. (31), is,

Mr2r̈

b2R2
(6π2r2 + b2) +

Mrṙ2

b2R2
(12π2r2 + b2) = −3Mgr2

R2
, (37)

(6π2r2 + b2)rr̈ + (12π2r2 + b2)ṙ2 + 3b2gr = 0, (38)

as found in eq. (7) above.13

A Appendix: Uncoiling of a Single Turn of Tape

The previous analyses made approximations related to the small thickness b of the tape,
which may be correct only to order b/r. Since the equation of motion contains terms of
order b2, these approximations may not be sufficiently accurate.

Here, we consider a single turn of tape of mass M and thickness b, wrapped on a massless
spool that rolls without slipping on a horizontal surface. The midline of the tape on the
spool is at (constant) radius r. We take the origin of the x-y coordinate system to be at the
midpoint of the left end of the tape (on the horizontal surface). The end of the tape still on
the spool is at angle θ to the line from the center of the spool to the line of contact of the
tape with the horizontal surface, as shown in the figure below.

13This problem was considered by a different “Lagrangian” method in sec. V.D of [19]. The Lagrangian
of eq. (59) of [19] seems correct (and leads to eq. (7)), but eq. (60) displays a different equation of motion
than either our eqs. (7) or (17).
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The rolling constraint is that,

x = rθ, ẋ = rθ̇, (39)

where x is the horizontal coordinate of the line of contact of the spool with the horizontal
surface. The coordinates of an element e of the tape of angular extent dθe on the spool at
angle θe are,

xe = r(θ − sin θe), ye = r(1 − cos θe), ẋe = rθ̇(1 − cos θe), ẏe = rθ̇ sin θe, (40)

noting that the angular velocity of all such elements is θ̇e = θ̇. The kinetic energy of the
tape is,

T =

∫
dme v2

e

2
=

∫ 2π

θ

M
dθe

2π

ẋ2
e + ẏ2

e

2
=

Mr2θ̇
2

2π

∫ 2π

θ

dθe (1 − cos θe)

= Mr2θ̇
2
(

1 − θ − sin θ

2π

)
. (41)

and the potential energy with respect to the midline of the tape on the horizontal surface is,

V =

∫
dme gye =

∫ 2π

θ

M
dθe

2π
gr(1 − cos θe) = Mgr

(
1 − θ − sin θ

2π

)
. (42)

The constant energy is, for motion with initial angular velocity θ̇0,

E = Mr2θ̇
2

0 + Mgr = T + V = M(r2θ̇
2
+ gr)

(
1 − θ − sin θ

2π

)
. (43)

As θ → 2π, θ̇ → ∞, although when θ = 2π the mechanical energy is zero, as noted in [1, 2].
Taking the time derivative of the energy (43), we find the equation of motion,

2Mr2θ̇θ̈

(
1 − θ − sin θ

2π

)
− M(r2θ̇

2
+ gr)θ̇

1 − cos θ

2π
= 0, (44)

2θ̈ (2π − θ + sin θ) − θ̇
2
(1 − cos θ) = g

1 − cos θ

r
(0 < θ < 2π). (45)

Note that the thickness b of the tape does not enter into the equation of motion (45), in
contrast to the previous analyses.

A.1 Force and Torque Analysis

First, we consider the vertical-momentum equation for the entire system,

N −mg =
d

dt

∫
dme ẏe =

d

dt

∫ 2π

θ

M
dθe

2π
rθ̇ sin θe = − d

dt
M

rθ̇

2π
(1 − cos θ)

= −Mr

2π

[
θ̈(1 − cos θ) + θ̇

2
sin θ

]
, (46)

where N is the upward normal force at the line of contact, and m = M(1 − θ/2π) is the
mass of the tape on the spool. The net force (and torque) on the portion of the tape at rest
is zero.
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A.1.1 The Reference Point is the Origin

The torque about the origin, at the (fixed) left end of the tape, is,

τ O = x x̂× N ŷ +

∫
xe x̂×−dmeg ŷ = Nrθ ẑ −

∫ 2π

θ

r(θ − sin θe)M
dθe

2π
g ẑ

= (N − mg)rθ ẑ − Mgr

2π
(1 − cos θ) ẑ

= −Mr2

2π

[
θθ̈(1 − cos θ) + θθ̇

2
sin θ

]
ẑ − Mgr

2π
(1 − cos θ) ẑ. (47)

The angular momentum of the system about the origin is,

LO =

∫
coil

(xe x̂ + ye ŷ) × dme(ẋe x̂ + ẏe ŷ) =

∫ 2π

θ

M
dθe

2π
(xeẏe − yeẋe) ẑ

=
Mr2θ̇

2π

∫ 2π

θ

dθe

[
(θ − sin θe) sin θe − (1 − cos θe)

2
]
ẑ

=
Mr2θ̇

2π
(−4π + θ − 2 sin θ + θ cos θ) ẑ. (48)

dLO

dt
=

Mr2θ̈

2π
(−4π + θ − 2 sin θ + θ cos θ) ẑ +

Mr2θ̇
2

2π
(1 − cos θ − θ sin θ) ẑ. (49)

The torque equation, τ O = dLO/dt, then implies,

2θ̈ (2π − θ + sin θ) − θ̇
2
(1 − cos θ) = g

1 − cos θ

r
, (50)

which agrees with eq. (45) found via an energy analysis.

A.1.2 The Reference Point is on the Line of Contact

If we use (x, 0) = (rθ, 0) as the (accelerated) reference point, we must consider the torque
associated with the “fictitious” coordinate force −Mẍ x̂ on the center of mass of the entire
tape, as well as that due to gravity.14

The coordinates of the center of mass of the entire tape are related by,

Mxcm =

∫
dme xe =

Mθ

2π

x

2
+

∫ 2π

θ

M dθe

2π
(x − r sin θe)

=
Mrθ2

4π
+

Mr

2π

∫ 2π

θ

dθe(θ − sin θe) =
Mrθ2

4π
+

Mr

2π

(
2πθ − θ2 + 1 − cos θ

)
=

Mr

2π

(
2πθ − θ2

2
+ 1 − cos θ

)
, (51)

Mycm =

∫
dme ye =

Mθ

2π
0 +

∫ 2π

θ

M dθe

2π
(r − r cos θe) =

Mr

2π
(2π − θ + sin θ). (52)

14For another example in which the “fictitious torques” must be considered, see [25].
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The torque about (x, 0) is, again noting that the net torque on the portion of the tape at
rest is zero,

τ x = [(xcm − x) x̂ + ycm ŷ] ×−Mẍ x̂ +

∫
coil

[(xe − x) x̂ + ye ŷ] ×−dme g ŷ

= Mẍycm ẑ −
∫ 2π

θ

Mg
dθe

2π
(xe − x) ẑ

=
Mr2θ̈

2π
(2π − θ + sin θ) ẑ +

Mgr

2π

∫ 2π

θ

dθe sin θe ẑ

=
Mr2θ̈

2π
(2π − θ + sin θ) ẑ − Mgr

2π
(1 − cos θ) ẑ. (53)

The angular momentum of the system about the moving point (x, 0) is,

Lx =

∫
coil

[(xe − x) x̂ + ye ŷ] × dme[(ẋe − ẋ) x̂ + ẏe ŷ]

=

∫ 2π

θ

M
dθe

2π
[(xe − x)ẏe − ye(ẋe − ẋ)] ẑ

=
Mr2θ̇

2π

∫ 2π

θ

dθe

[− sin2 θe + cos θ(1 − cos θe)
]
ẑ =

Mr2θ̇

2π

∫ 2π

θ

dθe (−1 + cos θe) ẑ

=
Mr2θ̇

2π
(−2π + θ − sin θ) ẑ, (54)

dLx

dt
=

Mr2θ̈

2π
(−2π + θ − sin θ) ẑ +

Mr2θ̇
2

2π
(1 − cos θ) ẑ. (55)

The torque equation, τ x = dLx/dt, then implies,

2θ̈ (2π − θ + sin θ) − θ̇
2
(1 − cos θ) = g

1 − cos θ

r
, (56)

which agrees with eq. (45) found via an energy analysis, and with eq. (50) via a torque
analysis about the fixed origin.

A.2 Lagrangian Analysis

A.2.1 For the Entire Tape

The Lagrangian for the entire tape is L = T −V with the kinetic energy T and gravitational
potential energy V given by eqs. (41)-(42). Since L does not depend explicitly on time, the
energy E = T + V is constant, and we expect the equation of motion from the Lagrangian
analysis to be the same as eq. (45) from the energy analysis. Indeed,

2πM

r2
L =

(
θ̇

2 − g

r

)
(2π − θ + sin θ) . (57)

0 =
d

dt

∂L
∂θ̇

− ∂L
∂θ

= 2θ̈ (2π − θ + sin θ) + 2θ̇
2
(−1 + cos θ) −

(
θ̇

2 − g

r

)
(−1 + cos θ)

= 2θ̈ (2π − θ + sin θ) − θ̇
2
(1 − cos θ) − g

r
(1 − cos θ), (58)

as in eq. (45).
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A.2.2 For the Variable-Mass Coil of Tape

We use the method of [10, 11], taking the control volume to be the coil of tape and the
coordinate to be angle θ. According to eq. (1) of [11],

d

dt

∂Tw

∂θ̇
− ∂Tw

∂θ
+

∫
∂T̃

∂θ̇
(v − w) · dArea −

∫
T̃

∂(v − w)

∂q̇k
· dArea = Qθ, (59)

where Tw is the kinetic energy within the control volume, T̃ is the kinetic energy per unit
volume, v is the velocity of the material at a point in the system, and since this system has
a potential energy V , the generalized force is Qθ = −∂V/∂θ.

The only material on the surface of the control volume is that at the interface between
the coiled and horizontal portions of the tape, which material is at rest. Hence the kinetic
energy T̃ per unit volume is zero on the surface of the control volume, so the integrals in
eq. (59) vanish. Since the kinetic energy Tw in the control volume is T of eq. (41), eq. (59)
reduces to,

d

dt

∂T

∂θ̇
− ∂T

∂θ
+

∂V

∂θ
=

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0, (60)

where L = T − V is the Lagrangian of the entire system. Therefore, use of eq. (59) also
leads to the equation of motion eq. (45).15

B Appendix: Uncoiling on a Slope

We also consider the case that the coil rolls without slipping on a slope at angle α (which
could be negative) with respect to the horizontal.

15If we consider the method of [19], in which partial derivatives of T do not act on the variable mass
m = M(1 − θ/2π), we should rewrite the kinetic energy (41) as,

T = mr2θ̇
2
(

1 +
sin θ

2π − θ

)
. (61)

Then, the equation of motion according to the method of [19] is,

d

dt

∂T

∂θ̇
− ∂T

∂θ
=

d

dt

[
2mr2θ̇

(
1 +

sin θ

2π − θ

)]
− mr2θ̇

2
(

cos θ

2π − θ
+

sin θ

(2π − θ)2

)

=
d

dt

[
Mr2θ̇

π
(2π − θ + sin θ)

]
− Mr2θ̇

2

2π

(
cos θ +

sin θ

2π − θ

)

=
Mr2θ̈

π
(2π − θ + sin θ) − Mr2θ̇

2

π
(1 − cos θ) − Mr2θ̇

2

2π

(
cos θ +

sin θ

2π − θ

)

=
Mr2θ̈

π
(2π − θ + sin θ) − Mr2θ̇

2

2π

(
1 − cos θ +

sin θ

2π − θ

)

= Qθ = −∂V

∂θ
=

Mgr

2π
(1 − cos θ),

2θ̈(2π − θ + sin θ) − θ̇
2
(

1 − cos θ +
sin θ

2π − θ

)
=

g

r
(1 − cos θ), (62)

which differs from eq. (45) by the term θ̇
2
sin θ/(2π − θ).
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As sketched in the figure on the next page, we take the x-y coordinates parallel and
perpendicular to the slope. The constraint equations (1)-(2) again apply.

If the coil were released from rest, it would spontaneously roll downhill.16

The x-momentum equation is, similar to eq. (9),

N − mg cosα =
dPy

dt
=

d

dt
(mṙ) =

d

dt

(
Mr2ṙ

R2

)
=

Mr

R2
(2ṙ2 + rr̈), (63)

N =
Mgr2 cos α

R2
+

Mr

R2
(2ṙ2 + rr̈). (64)

The x-momentum equation is, similar to eq. (11), but now taking Ftot to point uphill,

mg sinα − Ftot =
dPx

dt
=

d

dt
(mẋ) = − d

dt

(
2πMr3 ṙ

bR2

)
= −2πMr2

bR2
(3ṙ2 + rr̈), (65)

Ftot =
Mgr2 sinα

R2
+

2πMr2

bR2
(3ṙ2 + rr̈). (66)

The angular-momentum LO about the origin (at the upper end of the tape on the slope) is
again related by eqs. (13)-(15), while the torque about the origin is now,

τ 0 = (x x̂ + r ŷ) × mg(sinα x̂ − cosα ŷ) + (x x̂ + 0 ŷ) × (F x̂ + N ŷ)

= [(N − mg cosα)x −mgr sinα] ẑ

=
Mπr

bR2
(2ṙ2 + rr̈)(R2 − r2) ẑ − Mr(R2 − r2)g sinα

R2
ẑ. (67)

Equating (15) and (67), we have,

rr̈ +
10

3
ṙ2 +

gb sinα

3π
= 0. (68)

For an energy analysis, we note that the kinetic energy is again given by eq. (3), while
the gravitational potential energy of the system with respect to origin is,

V =
Mgr3 cos α

R2
− πMg(R4 − r4) sin α

2bR2
. (69)

16If the coil were given a large enough initial uphill velocity, it could roll uphill, and have its upper end
at final position x = −nl for α > 0 or x = l for α < 0, where l = πR2/b is the length of the tape.
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Unlike the case of uncoiling on a horizontal surface, the potential energy of the uncoiled
tape (at rest on the slope) is significant, and for sinα >∼ b/R, the second term in eq. (69)
dominates. The constant energy (prior to the final “big bang”) is,

E = MgR cos α = T + V =
Mr2 ṙ2

2R2
+

3π2Mr4 ṙ2

b2R2
+

Mgr3 cosα

R2
− πMg(R4 − r4) sinα

2bR2
. (70)

The first term on the right side of eq. (70) is small compared to the second for r � b,
such that,

ṙ2 =
2g b2R3

6π2r4 + b2r2

(
1 − r3

R3

)
cos α +

πgb(R4 − r4) sin α

6π2r4 + b2r2

≈ g b2R3

3π2r4

(
1 − r3

R3

)
+

πg(R4 − r4) sin α

br2
, (71)

which indicates that ṙ (and ẋ) diverge as r goes to zero, as mentioned above.
We can differentiate eq. (70) with respect to time to obtain an equation of motion,

(6π2r2 + b2)rr̈ + (12π2r2 + b2)ṙ2 + 3b2gr cosα + 4πgbr2 sinα = 0, (72)

which for r � b is approximately,

rr̈ + 2ṙ2 +
2gb sinα

3π
= 0, (73)

which differs considerably from eq. (68). Furthermore,

rr̈ = −3b2gr cos α

6π2r2 + b2
− 12π2r2 + b2

6π2r2 + b2
ṙ2 − 4πgbr2 sinα

6π2r2 + b2

≈ −b2g cosα

2π2r
− 2g b2R3

3π2r4

(
1 − r3

R3

)
− 2πg(R4 − r4) sinα

br2
< 0.

C Appendix: Uncoiling of a Thin Tape from a Spool

As another variant, whose equation of motion is integrable, we consider the case of a very
thin tape (of mass M , length l and thickness b), with many turns initially wrapped around
a massless spool (of radius r � b), as sketched below.17

17This variant was discussed in [2].
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The no-slip condition is that the length x of tape at rest on the horizontal support surface
and the angle θ through which the spool has rotated are related by,

x = rθ. (74)

Angle θ increases in a clockwise sense. Initially, x and θ are zero, and the coil is given a tiny
push to start it moving to the right with initial angular velocity θ̇0.

C.1 Energy Analysis

We analyze the motion in the approximation that mechanical energy is conserved.
We also adopt the approximation used in [2] that the length L of the tape is large

compared to 2πr, such that the center of mass of the tape on the spool is well approximated
as being at the center of the spool.

When the coil has rotated through angle θ, the mass m of the tape remaining on the
spool is,

m = M

(
1 − rθ

l

)
, (75)

and the moment of inertia about its axis is mr2. The center of the spool is at (x, y) = (rθ, r),
the kinetic energy T is, noting that the moment of inertia I of the coil is Mr2(1 − rθ/l),

T = Tcm + Trel to cm =
mẋ2

2
+

Iθ̇
2

2
= mr2θ̇

2
= Mr2θ̇

2
(

1 − rθ

l

)
, (76)

the gravitational potential energy with respect to the horizontal surface is,

V = mgr = Mgr

(
1 − rθ

l

)
, (77)

and the constant energy is,

E = Mr2θ̇
2

0 + Mgr = T + V = Mr2θ̇
2
(

1 − rθ

l

)
+ Mgr

(
1 − rθ

l

)
. (78)

The equation of motion for θ is obtained by differentiating eq. (78) with respect to time,

2θ̈

(
1 − rθ

l

)
− rθ̇

2

l
=

g

l
. (79)

However, we learn more about the motion by rewriting eq. (78) as,

θ̇
√

1 − rθ/l =

√
gθ

l
+ θ̇

2 ≈
√

g

r

√
rθ

l
, u̇

√
1 − u =

√
g

r

√
u, ṡ

√
1 − s2 =

1

2

√
g

r
, (80)

where the approximation is for small θ̇0, and we define u = rθ/l to obtain the second form,
and then s =

√
u =

√
rθ/l to obtain the third form. Note that the uncoiling occurs on the

interval 0 ≤ s ≤ 1.
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The first form of eq. (80) indicates that θ̇ → ∞ as θ → l/r = θuncoiled, when the end of
the tape strikes the horizontal surface with a “bang”, as noted in [2].

The third form of eq. (80) can be integrated using Dwight 350.01 to give time t as a
function of angle θ,

t = 2

√
r

g

∫ √
rθ/l

0

ds
√

1 − s2 =

√
r

g

(√
rθ

l

√
1 − rθ

l
+ sin−1

√
rθ

l

)
. (81)

The time for the tape to become completely uncoiled, starting from rest, is,18

tuncoiled =

√
r

g
sin−1 1 =

π

2

√
r

g
. (82)

For later use, we note that from eq. (78) we have that,

rθ̇
2
(

1 − rθ

l

)
=

grθ

l
, (83)

and then from eq. (79),

2θ̈

(
1 − rθ

l

)2

=
g

l
. (84)

C.2 Constraint Forces

C.2.1 Newtonian Approach

There must be a horizontal force Ftot = F + Fint and a vertical (normal) force N at the
line of contact of the coil with the horizontal surface, to maintain the constraint (74). As
before, F is the horizontal force of the support surface on the coil, and Fint is the horizontal,
internal force between the horizontal portion of the tape and the portion still in the coil.

We can compute the vertical constraint force on the coil via the vertical momentum
equation,

N − mg =
dPy

dt
=

d

dt
(mṙ) = 0, N = mg = Mg

(
1 − rθ

l

)
. (85)

We can compute the total, horizontal force Ftot via the horizontal momentum equation,
also using eqs. (83) and (84),

Ftot =
dPx

dt
=

d

dt
(mẋ) =

d

dt

[
M

(
1 − rθ

l

)
rθ̇

]
= M

(
1 − rθ

l

)
rθ̈ − Mr2θ̇

2

l

=
Mgr

2(l − rθ)
− Mgr2

l2
(86)

This force is always in the +x direction.

18The time (82) is 1/4 of the period of a simple pendulum of length r.
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Or, we could compute the horizontal force Ftot via the angular-momentum equation,
using the axis of the coil as the reference,

Ftot =
1

r

dL

dt
=

1

r

d

dt
(Iω) =

d

dt

[
Mr

(
1 − rθ

l

)
θ̇

]
, (87)

as in eq. (86).

C.2.2 Lagrangian Approach

As discussed in sec. 2.3 above, we can also compute the constraint forces via a Lagrangian
method in which a constraint is relaxed, introducing another coordinate, and terms involving
Lagrange multiplies in the equation of motion.

We first consider the vertical constraint force, associated with the constraint,

f2 = ys = 0, (88)

where ys is the vertical coordinate of the horizontal support surface. The constraint (74)
still holds.

The kinetic energy of the system is now, recalling eq. (76),

T =
Mẏ2

s

2
+ Mr2θ̇

2
(

1 − rθ

l

)
, (89)

and the gravitational potential energy with respect to the horizontal surface is,

V = (M − m)gys + mg(r + ys) = Mgys + Mgr

(
1 − rθ

l

)
, (90)

The equation of motion for coordinate ys includes the multiplier λ2,

λ2
∂f2

∂ys
= λ2 =

d

dt

∂L
∂ẏs

− ∂L
∂ys

= Mÿs + Mg. (91)

We can now enforce the constraint (88), i.e., that ÿs = 0, to find that the vertical constraint
(normal) force is,

λ2 = Mg. (92)

However, this normal force includes the force on the mass Mrθ/l that lies at rest on the
horizontal surface, so the normal force N on the line of contact with the coil is,

N = λ2 − Mgrθ

l
= Mg

(
1 − rθ

l

)
= mg, (93)

as in eq. (85).
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C.3 Torque Analysis

For a Newtonian analysis, we note that the horizontal surface exerts a (constraint) force on
its line of contact with the coil, which has horizontal component F (positive to the right)
and vertical component N . We now consider the system to be just the spool and the tape
thereon, which is a variable-mass system.

The horizontal equation of motion is,

F =
dpcoil,x

dt
=

d(mẋ)

dt
=

d

dt

[
Mrθ̇

(
1 − rθ

l

)]
= Mrθ̈

(
1 − rθ

l

)
− Mr2θ̇

2

l
. (94)

For a second equation involving F (but not the unknown normal force N), we consider the
torque τ and angular momentum Iω about the center of the spool,19

τ = −rF =
d(Iω)

dt
=

d

dt

[
Mr2θ̇

(
1 − rθ

l

)]
. (95)

After dividing by the constant r, this equation is the negative of eq. (94), which could only
be consistent if the tape cannot unwind!

C.4 A Lagrangian Analysis of the Variable-Mass Coil

We apply the Lagrangian method of [10, 11]) to the system of the variable-mass coil, taking
the control volume to be just outside the coil, and the single generalized coordinate to be
angle θ.

Since the matter on the surface of the control volume (at the line of contact with the
horizontal surface) is at rest, the kinetic energy T̃ per unit volume on that surface is zero,
so the general equation (31) simplifies to,

d

dt

∂Tw

∂θ̇
− ∂Tw

∂θ
= Qθ. (96)

The kinetic energy Tw inside the control volume is given by eq. (76), such that,

d

dt

∂Tw

∂θ̇
− ∂Tw

∂θ
= 2Mr2θ̈

(
1 − rθ

l

)
− Mr3θ̇

2

L
. (97)

The (vertical) external force (due to gravity) on the coil is associated with a potential,
eq. (77), so the generalized force is,20

Qθ = −∂V

∂θ
=

Mgr2

l
. (98)

19This reference point is accelerated, and in general, torque analyses with an accelerated reference point
must include a “fictitious”, coordinate force, −mẍcm, that acts on the center of mass. But, when the
reference point is the center of mass, this “fictitious” force exerts no torque.

20In the present approximation, the vertical coordinates of points on the coil do not depend on θ, so the
generalized force would be zero according to the first form of eq. (32). While the velocities of these points do
depend on ẋ = rθ̇, the vertical component of the velocity of point i varies as sin θi, which averages to zero
around the entire coil (in our present approximation), so the generalized force would also be zero according
to the second form of eq. (32). That is, the form (33) must be used for the generalized force in this example.
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Hence, the equation of motion according to eq. (96) is,

2θ̈

(
1 − rθ

l

)
− rθ̇

2

l
=

g

l
, (99)

as previously found in eq. (79).

D Appendix: Uncoiling without Friction

As yet another variant, we consider uncoiling of a thin tape of mass M and length l from a
massless spool of radius r, but with no friction between the tape and the horizontal support
surface, as sketched below. Then, there is no net horizontal force on the entire system, so
the x-coordinate of the center of mass remains fixed at, say, x = 0, if the system starts from
rest, and is given a small initial angular velocity θ̇0 at t = 0.21

The rotation of the coil leads to tape being “ejected” in the −x direction from the coil
at its line of contact with the horizontal surface. This “rocket propulsion” results in the
coil being accelerated in the +x direction. For this to be possible, the tape must be under
compression along the line of contact with the horizontal surface, which is an unusual state
for a tape, which typically is considered to support tension but not compression.22

The length of the tape on the horizontal surface is rθ, and its center has x-coordinate
xhoriz = x − rθ/2, where x is the coordinate of the center of the coil (and of the line of
contact). The mass of the horizontal tape is Mrθ/l and the mass of the coil is M(1− rθ/l).
The center of mass of the whole system is at x = 0, which implies that,

0 =
rθ

l

(
x − rθ

2

)
+

(
1 − rθ

l

)
x, x =

r2θ2

2l
, ẋ =

r2θθ̇

l
, ẍ =

r2(θθ̈ + θ̇
2
)

l
.(100)

When the coil has completely unwound, rθ = l, and x = l/2 is the coordinate of the right
end of the tape (whose center is, of course, then at x = 0) at rest on the horizontal surface.

21If the coil were given only a small initial velocity ẋ0, then it would simply slide without rotating at the
constant velocity ẋ0.

22A possible scenario is that the ejected tape “bunches up” close to the initial line of contact, such that
the center of the spool can remain fixed as the coil rotates. This “bunching” could be avoided it the tape
has some stiffness against bending, but then some energy would be stored in the initial bending of the tape
around the spool, and the energy analysis would need to be modified.
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As in the previous analyses, it seems reasonable to consider the approximation that me-
chanical energy (kinetic plus gravitational potential energy) is conserved during the motion,
and that we ignore elastic energy. The kinetic energy of the system is,

T = Thoriz + Tcoil = M
rθ

l

ẋ2
horiz

2
+ M

(
1 − rθ

l

)
ẋ2

2
+ M

(
1 − rθ

l

)
r2 θ̇

2

2

= M
rθ

2l

(
ẋ − rθ̇

2

)2

+ M

(
1 − rθ

l

)
r4θ2θ̇

2

2l2
+ M

(
1 − rθ

l

)
r2 θ̇

2

2

= M
r3θθ̇

2

8l3
(2rθ − l)2 + M

r2θ̇
2

2l3
(l − rθ)

(
l2 + r2θ2

)
= M

r2θ̇
2
(4l − 3rθ)

8l
. (101)

The gravitational potential energy with respect to the horizontal surface is,

V = mgr = Mgr

(
1 − rθ

l

)
, (102)

and the constant energy is,

E =
Mr2θ̇

2

0

2
+ Mgr = T + V = M

r2θ̇
2
(4l − 3rθ)

8l
+ Mgr

(
1 − rθ

l

)
, (103)

θ̇
2
(4l − 3rθ) = 8gθ + 4lθ̇

2

0. (104)

The equation of motion for θ is obtained by differentiating eq. (104) with respect to time,

θ̈(4l − 3rθ)2 = 16gl + 6rlθ̇
2

0. (105)

According to eq. (104), the angular velocity θ̇f as θ → θf = l/r is given by θ̇
2

f = 8g/r,

while according to eq (100), ẋ → ẋf = rθ̇f , but the center of the horizontal tape has velocity
ẋhoriz → ẋf−rθ̇f/2 = rθ̇/2. And, according to eq. (103) the system energy as θ → θf becomes

concentrated in the kinetic energy of sliding horizontal tape, T → Tf = Mrθf θ̇
2

f/8l = Mgr.
These results are somewhat inconsistent, and may indicate the inadequacy of our model
for the last few turns, when the center of mass of the tape on the spool is not longer well
approximated as being at the center of the spool.23

23To clarify this, we also consider the case of a tape of mass M and thickness b, coiled as in the figure on
p. 1, but with no friction at the horizontal support surface.

Here, we use the radius r of the coil as the coordinate, where r = R initially. The mass of the coil of
radius r is Mr2/R2, such that the mass of the tape on the horizontal surface is M(1− r2/R2) and its length
is lhoriz = π(R2 − r2)/b. The center of mass of the whole system is at x = 0, which implies that when the
line of contact of the coil with the horizontal surface is at x, and the center of mass of the horizontal tape
is at xhoriz = x− lhoriz/2 = x − π(R2 − r2)/2b,

0 =
(

1 − r2

R2

)(
x − lhoriz

2

)
+

r2

R2
x, x =

π(R2 − r2)2

2bR2
, ẋ = −2πrṙ(R2 − r2)

bR2
, (106)

ẋhoriz = ẋ +
πrṙ

b
= −πrṙ(R2 − 2r2)

bR2
. (107)
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E Appendix: Uncoiling Vertically

In this Appendix we consider a tape of mass M and thickness b on a massless spool of radius
r−b/2 with a fixed axis, such that the tape uncoils vertically, without friction. For simplicity,
we suppose the tape has length 2πr, i.e.it initially forms only a single turn on the spool.

As in eq. (2), the angular velocity of the unwinding coil is related by,

θ̇ = ω =
ẋ

r
= −2πṙ(R2 − r2)

bR2
. (108)

As in the previous analyses, it seems reasonable to consider the approximation that mechanical energy is
conserved during the motion. The kinetic energy of the system is,

T = Thoriz + Tcoil = M

(
1 − r2

R2

)
ẋ2

horiz

2
+ M

r2

R2

ẋ2

2
+ M

r2

R2
r2 θ̇

2

2

= M

(
1 − r2

R2

)
π2r2ṙ2(R2 − 2r2)2

2b2R4
+ M

r2

R2

4π2r2ṙ2(R2 − r2)2

b2R4

= M

(
1 − r2

R2

)
π2r2ṙ2

2b2R4
(R4 + 4r2R2 − 4r4). (109)

The gravitational potential energy with respect to the horizontal surface is, as in eq. (4),

V = mgr =
Mgr3

R2
, (110)

and the constant energy is, for motion with initial angular velocity θ̇0,

E =
Mr2θ̇

2

0

2
+ Mgr = T + V = M

(
1 − r2

R2

)
π2r2ṙ2

2b2R4
(R4 + 4r2R2 − 4r4) +

Mgr3

R2
, (111)

ṙ2(R4 + 4r2R2 − 4r4) =
2gb2R4

π2r
+

b2R6θ̇
2

0

π2(R2 − r2)
. (112)

As r → 0, ṙ diverges, but rṙ → 0, such that ẋ → 0 and ẋhoriz → 0, which indicates that the awkward
limiting behavior of ẋ and ẋhoriz for a thin coil wrapped on a massless spool was an artifact of the poor
approximation that the center of mass of the coil remained at the center of the spool at all times.
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E.1 Energy Analysis

We take the origin to be on the axis of the spool, the x-axis to the horizontal and to the
right, and the y-axis to be vertical and downwards. The end of the tape on the spool makes
angle θ to the x-axis, as shown in the figure. The vertical section of the tape has length
y = rθ.

All points on the tape have velocity rθ̇, so the kinetic energy is,

T =
Mr2θ̇

2

2
= Tcoil + Tvert = M

(
1 − θ

2π

)
r2θ̇

2

2
+ M

θ

2π

r2θ̇
2

2
. (113)

The gravitational potential energy is,

V = Vcoil + Vvert = −
∫

coil

dme gye − M
θ

2π
g
y

2
= −

∫ 2π

θ

M
dθe

2π
gr sin θ − Mgrθ2

4π

= −Mgr

2π
(1 − cos θ) − Mgrθ2

4π
. (114)

The total energy E = T + V is constant, and zero if the system starts from rest. In that
case, the tape has velocity v +

√
2πgr as it leaves the spool. However, the tape leaves the

spool in a finite time only if the initial angular velocity is nonzero.
Taking the time derivative of the constant energy, we obtain the equation of motion,

θ̈ =
g

2πr
(θ − sin θ). (115)

E.2 Torque Analysis

Taking the reference point on the fixed axis of the spool, the torque on the tape is,

τ = τ coil + τ vert =

∫
coil

re × dme g ŷ + r x̂ × M
θ

2π
g ŷ

=

∫ 2π

θ

r(x̂ cos θe + ŷ sin θe) × M
dθe

2π
g ŷ +

Mgrθ

2π
ẑ =

Mgr(θ − sin θ)

2π
ẑ. (116)

The angular momentum of the system is simply,

L = Mr2θ̇ ẑ,
dL

dt
= Mr2θ̈ ẑ, (117)

so the torque equation τ = dL/dt also leads to the equation of motion (115).

E.3 Lagrangian Analysis

E.3.1 For the Entire Tape

The Lagrangian for the entire tape is L = T − V , using T and V from eqs. (113)-(114) and
the coordinate as θ. Then, Lagrange’s equation leads to the equation of motion (115).
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E.3.2 For the Variable-Mass Coil

We make a Lagrangian analysis for the variable-mass coil using the method of [10, 11], taking
the control volume to surround the coil. The velocity w of the control volume is 0, and the
only mass on the surface of the control volume is at the interface between the coil and the
vertical portion of the tape.

The kinetic energy of the mass within the control volume is,

Tw = Tcoil = M

(
1 − θ

2π

)
r2θ̇

2

2
, (118)

d

dt

∂Tw

∂θ̇
− ∂Tw

∂θ
= Mr2θ̈

(
1 − θ

2π

)
− Mr2θ̇

2

2π
+

Mr2θ̇
2

4π
= Mr2θ̈

(
1 − θ

2π

)
− Mr2θ̇

2

4π
. (119)

The generalized force associated with the coil includes the generalized force of gravity on the
coil, and the generalized force of the vertical tape on the coil. The former is −∂Vcoil/∂θ and
the latter is −∂Vvert/∂θ. Altogether,

Qθ = −∂V

∂θ
=

Mgr(θ − sin θ)

2π
. (120)

The matter on the surface of the control volume, at the interface of the coil with the vertical
tape, has velocity v = rθ̇ ŷ. The product of the kinetic energy T̃ per unit volume on the
surface of the control volume and the area element dArea is,

T̃ dArea =
1

2

M

2πr
r2θ̇

2
ŷ =

Mrθ̇
2

4π
ŷ,

∂T̃

∂θ̇
dArea =

Mrθ̇

2π
ŷ. (121)

Also, at the surface of the control volume where there is matter,

v − w = rθ̇ ŷ,
∂(v − w)

∂θ̇
= r ŷ. (122)

Then, the equation of motion according to eq. (31) is,

Mr2θ̈

(
1 − θ

2π

)
− Mr2θ̇

2

4π
+

Mrθ̇

2π
ŷ · rθ̇ ŷ − Mrθ̇

2

4π
ŷ · r ŷ =

Mgr(θ − sin θ)

2π
, (123)

θ̈

(
1 − θ

2π

)
=

g

2πr
(θ − sin θ). (124)

It seems that the method of [10, 11] does not work well for the variable-mass coil. A
difficulty is that use of a kinetic energy of only part of the system, as in Tw, with a Lagrange-
like computation, (d/dt)(∂Tw/∂θ̇) − ∂Tw/∂θ, will not yield the correct term in θ̈ in the
equation of motion (115). This comment applies also to the method proposed in [19].
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