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1 Problem

In Galilean relativity an object with velocity u in one inertial frame appears to have velocity,

u′ = u− v, (1)

to an observer moving with velocity v with respect to the original frame.
What is the Galilean transformation for the phase velocity up = ω k̂/k of a wave of

angular frequency ω > 0 and wave vector k, for waves where the phase velocity is much less
than the speed of light?

Show that the component of phase velocity perpendicular to velocity v is not invariant
under the Galilean transformation, so that the sign of the transverse velocity can be opposite
in different frames of reference.

Discuss also the Galilean transformation of group velocity, and of the wave equation.
Restrict your discussion to classical physics. The possibly paradoxical behavior of Galilean
transformations of quantum theoretic wave functions is reviewed in [1].

For completeness, consider also the Lorentz transformations of phase and group velocity.

2 Solution

2.1 Galilean Transformation of Phase Velocity

Much of the content of this section is also in sec. 11.2 of [2].
Consider a wave,

f = cos(k · x − ωt), (2)

in the inertial frame with coordinates (x, t) in which the elastic medium that supports the
wave is at rest. The phase velocity of this wave has magnitude u = ω/k and direction k.
That is, the phase velocity vector of the wave is,

up =
ω

k
k̂ =

ω

k2
k. (3)

An observer whose velocity is v with respect to the original frame uses coordinates (x′, t′)
to describe an event (x, t) in the original frame obtained by the Galilean transformation,

x′ = x − vt, t′ = t, (4)
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supposing that the spatial axes in the two frames are parallel. The moving observer sees
the wave to have the same amplitude as described by eq. (2), which he describes in terms of
(x′, t′) as the wave function f ′,

f ′ ≡ cos(k′ · x′ − ω′t′) = f = cos(k · x − ωt) = cos[k · x′ − (ω − k · v)t′]. (5)

From eq. (5) we see that the wave vector is the same in the moving frame as in the
original frame,

k′ = k, (6)

so the wavelength is the same in both frames, and the direction of the wave vector is the
same in both frames (or the direction of the wave in the moving frame is opposite to that in
the original frame if k · v > ω). Similarly, the wave frequency in the moving frame is,

ω′ = |ω − k · v| , (7)

which is the well-known Doppler effect for a source at rest and a moving observer.
Thus, the phenomenon of the aberration of light (apparent change of direction a light

ray depending on the motion of the observer, as discovered in 1728 by Bradley) would not
exist if light waves obeyed Galilean transformations. However, if light consists of particles
with a finite speed, as advocated by Newton, then aberration of light is expected in Galilean
relativity. Advocates of the wave theory of light in the 1800’s went to considerable lengths to
explain how the dragging of the ether by the Earth renders a wave theory of light compatible
with the observation of stellar aberration. See, for example, [3].

The phase velocity u′
p of the wave in the moving frame is given by,

u′
p =

ω′

k′2k
′ =

ω′

k2
k =

ω − k · v
k2

k = up − (v · ûp)ûp = up − v‖ = up − v + v⊥ (8)

if k · v < ω, noting that the components of velocity v that are parallel and perpendicular to
velocity up are v‖ = (v · ûp)ûp and v⊥ = v − v‖, respectively. When k · v > ω, the phase
velocity in the moving frame is,

u′
p = −ω′

k2
k = −k · v − ω

k2
k = up − (v · ûp)ûp, (9)

so the form of the phase velocity transformation is independent of the magnitude of k · v.
However, the transformation of the wave velocity is NOT the same as the transformation of
velocity of a particle (u′ = u− v) if the direction k of the wave is different from that of the
boost v.

Example:

k =
(1,−1, 0)√

2
, ω = 1, and v = (v, 0, 0). (10)

Then k = 1 and the phase velocity in the original frame is,

up =
ω

k2
k =

(1,−1, 0)√
2

. (11)
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The phase velocity in the moving frame is

u′
p = up − (v · ûp)ûp =

(1,−1, 0)√
2

− v√
2

(1,−1, 0)√
2

=
(1 − v/

√
2, v/

√
2 − 1, 0)√

2
. (12)

The tranverse velocity u′
p,⊥ = u′

p,y is never the same as u⊥,p = uy for nonzero v, and if

v > 1/k⊥ =
√

2 then the sign the transverse component u′
p,⊥ of the phase velocity is opposite

in the moving frame to that of up,⊥ in the original frame.
We illustrate this behavior by considering a train of water waves with velocity up =

(1,−1)/
√

2 impinging on a beach that lies along the x axis, as shown in the figure below.

The intercept of a wavefront with the beach has velocity uintercept = (
√

2, 0). If a jogger
runs along the beach with velocity v = uintercept, then the wavetrain appears to be at rest
with respect to the jogger, as confirmed by eq. (12).

If the jogger runs with velocity v = 2uintercept, then the phase velocity of the wavetrain
according to the jogger is u′

p = −up, i.e., the wavetrain appears to recede from the beach
opposite to the direction of motion of the waves according to an observer at rest.

2.2 Galilean Transformation of Group Velocity

In a medium that is at rest on average and whose oscillations are characterized by the
dispersion relation ω = ω(k), a wave packet with frequency components near a central value
ω0 = ω(k0) has group velocity ug given by,

ug = ∇k ω(k0) =
∂ω(k0)

∂k
=

dω(k0)

dk
k̂. (13)
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In a moving frame related to the rest frame of the medium by the Galilean transformation
(4) we have seen that k′ = k and ω′ = ω − k · v, so the group velocity in that frame is given
by,1

u′
g =

∂ω′(k′
0)

∂k′ =
∂ω′(k′

0)

∂k
=

dω(k0)

dk
k̂ − v = ug − v. (14)

That is, the Galilean transformation of group velocity has the same form as that of particle
velocity, eq. (1), in contrast with the transformation (8) for phase velocity.2

This result is in agreement with the quantum view that waves have quanta that behave
like particles, where the effective particle velocity of a wave packet of such quanta is the
group velocity, not the phase velocity. For discussion of different aspects of quantum theory
and Galilean transformations, see [1, 4].

Group velocity is the same as the velocity of energy flow in most examples of wave
phenomenon [5]. A pictorial derivation of the Galilean transformation of energy flow velocity
has been given in sec. 11.2 of [2] (without comment that energy flow velocity is the same
as group velocity, which is the same as phase velocity for light waves with the dispersion
relation ω = kc, and hence the pictorial derivation is contradictory for light waves).

2.3 Galilean Transformation of the Wave Equation

The wave equation is,

∇2f − 1

u2

∂2f

∂t2
= 0, (15)

in the inertial frame with coordinates (x, t) where the medium is at rest and the wave velocity
is u (at angular frequency ω). The Galilean coordinate transformation to an inertial frame
that moves with velocity v with respect to the rest frame of the medium is given by eq. (4).
The transformations of derivatives with respect to the coordinates are,

∂

∂x
=

∂x′

∂x
· ∇′ +

∂t′

∂x

∂

∂t′
=

∂

∂x′ ,
∂

∂t
=

∂x′

∂t
· ∇′ +

∂t′

∂t

∂

∂t′
=

∂

∂t′
− v · ∇′, (16)

so the wave equation (15) transforms to,

∇′2f ′ − 1

u2

∂2f ′

∂t′2
+

2

u2

∂

∂t′
v · ∇′f ′ − (v · ∇′)2

u2
f ′ = 0, (17)

1If ω < k · v then k′ = −k and ω′ = −ω + k · v, so that the result of eq. (14) still obtains.
2A counterintuitive result of the transformation (14) is that while the phase and group velocities might

have the same direction in the rest frame of a medium, their directions will be different in frames where the
medium has a velocity whose direction is different from the common direction of the wave velocities in the
rest frame. For example, consider a medium with the dispersion relation (in the rest frame of that medium)
ω = uk for constant u. Then, for a packet of waves all propagating in the x̂-direction, up = ug = u x̂, which
is not of the form ω′ = u′k′; a medium that is dispersion free in its rest frame has dispersion in frames
where the medium is moving (according to Galilean transformations). In the ′ frame where the medium has
velocity v, the dispersion relation transforms to ω′ = uk′ − k̂′ · v according to eqs. (6) and (7), while the
waves of the packet still have phase velocity in the x̂ = x̂′ direction. However, the group velocity in the ′

frame is u′
g = ∇k′ω′ = u k̂′ − v = ug − v. Unless velocity v is along the x axis, the group velocity in the

′ frame has a component perpendicular to the phase velocity. There is no formal contradiction here, but
we see that care is required to identify the group velocity of waves in a moving medium. In particular, we
should not write ω′ = (u − v cos θ)k′, where the angle θ between v and k = k′ is constant for waves in the
packet, and thereby incorrectly conclude that u′

g = (u − v cos θ)k̂′.
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in the moving frame.
The wave function (5) is readily verified to be a solution to equation (17) for u = ω/k.
The noninvariance of the wave equation (15) under Galilean transformations led W. Voigt

in 1887 to deduce a form of the coordinate transformation for which the wave equation is
invariant [6], namely what is now called the Lorentz transformation if u = c. He considered
a (conformal) generalization of eq. (4),3

x′ = s[a(x‖ − vt) + x⊥] = s[x + (a − 1)(x · v̂)v̂ − avt], t′ = bs
(
t − v

u2
· x

)
, (18)

where a, b and s are positive constants, and,

x‖ = (x · v̂)v̂, x⊥ = x − (x · v̂)v̂. (19)

The transformations of derivatives are now,

∂

∂x
=

∂x′

∂x
· ∇′ +

∂t′

∂x

∂

∂t′
= s

[
∂

∂x′ + (a − 1)v̂x(v̂ · ∇′) − b
vx

u2

∂

∂t′

]
, (20)

∂

∂t
=

∂x′

∂t
· ∇′ +

∂t′

∂t

∂

∂t′
= s

[
b

∂

∂t′
− av · ∇′

]
, (21)

so that,

∇2 = s2

[
∇′2 +

b2v2

u4

∂2

∂t′2
− 2ab

u2

∂

∂t′
v · ∇′ + (a2 − 1)(v̂ · ∇′)2

]
, (22)

and the wave equation (15) with u = c transforms to,

∇′2f ′ − b2

c2

(
1 − v2

c2

)
∂2f ′

∂t′2
+

[
a2

(
1 − v2

c2

)
− 1

]
(v̂ · ∇′)2f ′ = 0 (23)

in the moving frame for any nonzero value of s. If,

a = b =
1√

1 − v2/u2
, (24)

then the wave equation in the moving frame reduces to,

∇′2f ′ − 1

u2

∂2f ′

∂t′2
= 0, (25)

i.e., its form is invariant under the transformation (18) with a and b given by eq. (24) for
any nonzero value of s.

A consequence is that the wave velocity is u in both the rest frame of the medium
and in the moving frame. This would make sense only if the wave velocity had a more
universal character than understood in the year 1887. Voigt noted that his transformation
predicted aberration of stellar lightwaves observed on the moving Earth. He also noted that

3Voigt actually used transformation (18) subject to the condition that d = 1/a which makes x′
‖ = x‖−vt

as in the classic Galilean transformation. Transformation (18) with arbitrary d was first considered by
Poincaré in 1905 [7].
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his transformation assumed that the wave velocity was independent of position, which is not
typically the case for hydrodynamic waves, but is true for light waves (in vacuum). However,
he did not further develop the notion that the speed of light c is a universal constant.

Voigt assumed the existence of a luminiferous ether, and did not notice that if the wave
equation has the same form in all inertial frames, then the ether has no special rest frame
(that can be determined from observations of lightwaves) and hence may not exist.4

The development of the theory of relativity by Lorentz, Poincaré and Einstein appears
not to have been influenced by the 1887 paper of Voigt prior to 1908, when Lorentz belatedly
became aware of it.

2.4 Lorentz Transformation of Phase Velocity

For earlier discussions of this topic see [8]-[12]. (Oct. 19, 2019: see also [13]).
We have seen in sec. 2.1 that in a Galilean transformation of phase velocity up by a

velocity v, the component of phase velocity transverse to v is not invariant. This alerts us
that phase velocity will not be part of a Lorentz 4-velocity vector. However, we can still
display an explicit form for the Lorentz transformation of phase velocity.

We write a 4-vector as aµ = (a0, a) and the square of its invariant length as aµa
µ = a2

0−a2.
In particular, the position 4-vector is xµ = (ct,x).

The Lorentz transformation of a 4-vector aµ from one inertial frame to another with
velocity v with respect to the first can be written as,

a′
0 = γ(a0 − a‖v/c), (26)

a′
‖ = γ(a‖ − a0v/c), (27)

a′
⊥ = a⊥, (28)

where,

γ =
1√

1 − v2/c2
, a = a‖ + a⊥, a‖ = (a · v̂)v̂, (29)

and the 4-vector has components (a0, a) and (a′
0, a

′) in the first and second frames, respec-
tively.

We recall that the 3-velocity u of a particle obeys u < c and can be embedded in the
4-velocity,

uµ = γu(c,u), where γu =
1√

1 − u2/c2
. (30)

The Lorentz transformation (26)-(28) of the particle 4-velocity is,

γu′ = γγu(1 − u · v/c2), (31)

u′
‖ =

γγu

γu′
(u‖ − v) =

u‖ − v

1 − u · v/c2
=

(u · v̂)v̂ − v

1 − u · v/c2
, (32)

u′
⊥ = u⊥ = u− (u · v̂)v̂. (33)

4The convective derivative D/Dt = ∂/∂t + u · ∇ for a particle/observer with velocity u transforms to
∂/∂t′ + (u− v) ·∇′ = D/Dt′ under a Galilean transformation, so the form of the Navier-Stokes equation is
invariant under this transformation. However, one would not thereby infer that fluids have no rest frame.

6



Equations (32) and (33) can be combined to give,

u′ =
u− v − u⊥(u · v)/c2

1 − u · v/c2
, (34)

which reverts to the Galilean transformation (1) of particle velocity in the low-velocity limit.
Returning to consideration of waves, we can associate the plane wave (2), cos(k ·x−ωt),

with a wave 4-vector kµ = (ω/c,k) such that the phase φ of the wave is a Lorentz scalar,

φ = k · x − ωt = −kµx
µ. (35)

Surfaces of constant phase propagate with phase velocity,

up =
ω

k2
k = up‖ + up⊥ = up‖ v̂ + up⊥ k̂⊥, (36)

where up‖ = u · v̂, and k̂⊥ is a unit vector in the direction of up⊥ = up − up‖ (and not the

component perpendicular to v of the unit vector k̂ = ûp). If we write,

k = k‖ v̂ + k⊥ k̂‖, (37)

and note that ω = k up, we also have,

k‖ =
ω up‖
u2

p

, k⊥ =
ω up⊥

u2
p

. (38)

In a frame that moves with velocity v with respect to the original frame the phase velocity
is,

u′
p =

ω′

k′2k
′ =

ω′

k′ û
′
p = u′

p‖ + u′
p⊥. (39)

The Lorentz transformation (26)-(28) of the wave 4-vector kµ is,

ω′ = γ(ω − k · v) = γ(ω − k‖ v) =
γ ω

u2
p

(u2
p − up‖ v), (40)

k′
‖ = γ(k‖ − ωv/c2) = γ v̂(k‖ − ωv/c2) =

γ ω

c2 u2
p

v̂
(
c2 up‖ − u2

p v
)
, (41)

k′
⊥ = k⊥ = k⊥ k̂⊥ =

ω up⊥
u2

p

k̂⊥. (42)

Combining eqs. (41) and (42) we find,

k′2 =
ω2

c4 u4
p

[c4 u2
p⊥ + γ2(c2 up‖ − u2

p v)2], (43)

and hence the Lorentz transformation of phase velocity is,5

u′
p =

ω′

k′ =
γ c2(u2

p − up‖ v)√
c4 u2

p⊥ + γ2(c2 up‖ − u2
p v)2

=
up − v up‖/up√

u2
p⊥/γ2u2

p + (up‖/up − up v/c2)2
, (44)

5Equation (44) can be used to define an index of refraction n′ = c/u′
p in a moving medium [14].
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and the direction of the wavefront is,

û′
p = k̂′ =

k′
‖ + k′

⊥
k′ =

γ(c2 up‖ − u2
p v) v̂ + c2 up⊥ k̂⊥√

c4 u2
p⊥ + γ2(c2 up‖ − u2

p v)2
=

(up‖/up − up v/c2) v̂ + (up⊥/γup) k̂⊥√
u2

p⊥/γ2u2
p + (up‖/up − up v/c2)2

.

(45)
The components of the transformed phase velocity are,

u′
p‖ = u′

p

k′
‖

k′ =
γ2 c2(u2

p − up‖ v)(c2 up‖ − u2
p v)

c4 u2
p⊥ + γ2(c2 up‖ − u2

p v)2
v̂ =

(up − v up‖/up)(up‖/up − up v/c2)

u2
p⊥/γ2u2

p + (up‖/up − up v/c2)2
v̂, (46)

u′
p⊥ = u′

p

k′
⊥

k′ =
γ c4(u2

p − up‖ v)up⊥
c4 u2

p⊥ + γ2(c2 up‖ − u2
p v)2

k̂⊥ =
(up − v up‖/up)up⊥/γup

u2
p⊥/γ2u2

p + (up‖/up − up v/c2)2
k̂⊥. (47)

The cumbersome expression (44) reduces to the Galilean result (8) in the low-velocity
limit.

If the boost velocity v is parallel to the phase velocity up, then from eqs. (40) and (41),
or from eq. (44), we find that,

u′
p =

up − v

1 − up · v/c2
(up ‖ v), (48)

so that the Lorentz transformation of phase velocity is the same as that for particle velocity,
eq. (34), in this special case.

However, since the phase speed ω/k can have any value less than, equal to, or even greater
than c,6 the wave 4-vector kµ can be spacelike, lightlike or timelike, respectively. This permits
possibly surprising scenarios such as up = 2c x̂, v = c x̂/2, for which the transformed wave

vector k′ vanishes, the transformed waveform is the standing wave cos(
√

3/4ωt′), and the
transformed phase velocity is formally infinite.

For the special case that up = c, eq. (40) becomes ω′ = γ ω(1 − up‖v/c2), and eq. (43)

becomes (after some algebra) k′2 = γ2ω2(1 − up‖v/c2)2/c2 = ω′2/c2. That is, if the phase
velocity is c in one inertial frame it is also c in any other inertial frame.

2.5 Lorentz Transformation of Group Velocity

This section follows [15].
The result of sec. 2.3 that group velocity behaves like a particle velocity under Galilean

transformations presages a similar behavior under Lorentz transformations.
A suitable 4-vector generalization of the 3-dimensional group velocity (13), ug = ∂ω/∂k,

is based on rewriting the dispersion relation ω = ω(k) as,

F (kµ) = F (ω/c,k) = 0, (49)

and then taking the 4-vector gradient,

∂F

∂kµ

∣∣∣∣
F=0

=

(
c
∂F

∂ω
,
∂F

∂k

)
F=0

=
∂F

∂ω

∣∣∣∣
F=0

(
c,

∂ω

∂k

)
=

∂F

∂ω

∣∣∣∣
F=0

(c,ug). (50)

6A well-known case with phase speed greater than c is a waveguide. See, for example, sec. 8.3 of [2].
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The invariant length of this gradient is,√
∂F

∂kµ

∂F

∂kµ

∣∣∣∣∣
F=0

= c
∂F

∂ω

∣∣∣∣
F=0

√
1 − u2

g/c
2 =

c

γug

∂F

∂ω

∣∣∣∣
F=0

. (51)

Dividing the 4-vector (50) by the Lorentz scalar (51) and multiplying by c we obtain the
group-velocity 4-vector,

ug,µ = γug
(c,ug). (52)

This 4-vector is formally identical to that of the 4-velocity (30) of a particle, so the Lorentz
transformation of the group velocity ug has the form of eq. (34),

u′
g =

ug − v − ug⊥(ug · v)/c2

1 − ug · v/c2
. (53)
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