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1 Problem

Electrical currents in resistive materials must be driven by an internal electric field E = J/ς ,
where J is the current density and ς is the electrical conductivity. The internal electric
field must be shaped by an appropriate density σ of surface electrical charge. In practice,
the surface charge density is quite small, and is often neglected in discussions of electrical
currents.1 Some exceptions are [2]-[37].2

Jefimenko [8] considered the circuit illustrated below, in which two resistive plates of
width r0 are joined along one edge to form a wedge of angle 2α, with a battery of potential
difference V0 connected between the outer edges of the plates.3

Deduce the potential, the electric field and the surface charge densities. Assuming the
electrical current is I per unit length along the system (perpendicular to the plane of the

1This issue is distinct from the fact that a steady current of electrons in a conductor must have a tiny
bulk charge density, of order v2/c2, where v is the velocity of the moving charges and c is the speed of light
in vacuum. See, for example, [1].

2In [3] Sommerfeld deduced the electric field inside and outside of a wire that carries electromagnetic
waves, but did not explicitly relate these fields to the surface charge density. Figure 5 of this paper is the
source of Fig. 104 of [44].

3The technique of visualization of electric field lines using grass seeds on a glass plate is described in [38].
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figure), deduce the magnetic field and the Poynting vector [39].4,5

2 Solution

This two-dimensional problem is peculiar in that the potential is specified only on the plates,
which by themselves do not form a complete boundary, yet standard procedures seem to
“force” a solution that is appealing for the interior region of the circuit but nonsensical in
the exterior region.

Away from the battery and conductors, the electric scalar potential V obeys Laplace’s
equation, ∇2V = 0, for which a general solution to a two-dimensional potential in cylindrical
coordinates (r, θ, z) is,6

V (r, θ) =
∑

(An cos knθ + Bn sin knθ)(Cnrkn + Dnr−kn) + (E + Fθ)(G + H ln r). (1)

Although the details of the battery and the wires that connect it to the outer edges of
the plates have not yet been specified, these details partition the (r, θ) plane into two regions
that we denote as the “exterior” and the “interior” of the circuit.

While the plates are symmetric about the x-axis, the battery and connecting leads need
not be so. It seems only a minor restriction to assume that the potential V is antisymmetric
in x and in θ. In this case, the potential is zero along the x-axis, i.e., V (r, θ = 0, π) = 0.

These “constraints” limit the form of the potential to,

V (r, θ) =

⎧⎨
⎩

∑
n sin knθ(Cnrkn + Dnr−kn) + θ(G + H ln r) (interior),∑
n sinnθ(C ′

nr
n + D′

nr−n) (exterior),
(2)

noting that in the exterior solution, the parameters kn must be integers n such that sin knπ =
0.

The boundary between the interior and exterior regions includes the plates, which lie on
the planes (r < r0,±α, z), where r0 is the width of the plates and α is the half angle of
the wedge. The potential should be continuous across these line segments, which appears to
imply that the potential must have the form,

V (r, θ) =
∑

n

sinnθ(Cnrn + Dnr−n), (3)

in both the exterior and interior regions.

4Poynting gave examples of his vector field for dc circuits, arguing that energy flows from the source
(battery) to the load resistor across “empty” space (i.e., through the electromagnetic field there) rather than
inside the conductors that connect the two. This counterintuitive result often leads to skepticism, such as
that in [40] (1897). Early comments such as [41, 42] did not perhaps settle the issue, while [3, 4, 5] represent
the emergence of a consensus in support of Poynting’s view.

5This problem inspired the possibly more straightforward variant of [15] (which also appeared in Fig. 2
of [5]). For discussion of this case by the author, see [43].

6See, for example, eq. (4-38) of [45], or eq. (7.100) of [46], which considers the present example in
sec. 9.7.4.
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Furthermore, the assumption of constant current in the resistive plates, whose outer edges
are at potential ±V0/2, implies that the potential along the plates has the form,

V (r < r0,±α) = ±V0r

2r0
. (4)

This appears to force us to consider the two regions r < r0 and r > r0, such that index n
can only be 1, and the potential is,

V (r, θ) =

⎧⎨
⎩

V0r sin θ/2r0 sinα = V0y/2r0 sin α (r < r0),

V0r0 sin θ/2r sinα (r > r0),
(5)

which is continuous at r = r0 and satisfies the “boundary condition” (4). This form has the
appealing implication that the electric field in the interior of the circuit is constant and in
the y-direction,

Einterior = − V0

2r0 sinα
ŷ, (6)

in qualitative agreement with the figure on p. 1.7

However, the potential (5) also implies that eq. (6) applies in the exterior region of
the circuit for r < r0, and that the radial electric field is not continuous across the arc
(r0, α < |θ| < π) where there is no material.8

That is, the arguments which led to the potential (5) cannot all be valid.

2.1 The Battery as a Boundary Condition

The previous discussion has been vague as to details about the battery, other than that its
potential difference is V0 and that the potential is assumed to be (anti)symmetric about the
x-axis.

We could stipulate that the battery is consistent with the electric field (6) in various
ways. A specification which emphasizes cylindrical coordinates is that the battery lies on
the surface (r0, |θ| < α, z) with potential,

Vbattery(r0, |θ| < α, z) =
V0

2

sin θ

sinα
. (7)

This is also consistent with the form (5) for the potential in both the exterior and interior
(r < r0, |θ| < α) regions.

The potential (5) satisfies Laplace’s equation in the interior region, but not in the exterior
region since ∇2V �= 0 on the arc (r0, |θ| > α). Hence, we can conclude that the potential (5)
is the unique solution in the interior region (since for this region it satisfies both Laplace’s

7This form was also deduced by Jefimenko [8].
8The potential (5) is proportional to sin θ/r at large r, as is reasonable for the present problem where

the electric charges along the circuit (not yet deduced) have an electric dipole moment in the y-direction and
hence an asymptotic potential of this form. That is, the potential (5) must be essentially correct at large r
for all θ. Thanks to Mark Heald for pointing this out.
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equation and the boundary conditions on the potential). However, the form (5) is not a valid
solution in the exterior region.

It seems that a solution for the potential V via separation of variables in cylindrical
coordinates, i.e., eq. (1), does not exist in the exterior region.9 Similarly, if we were to
consider use of rectangular coordinates, and a battery along the line (x = r0 cosα, |y| <
r0 sinα) with potential Vbattery = V0y/2, we would find the same interior solution, but no
solution via separation of variables in the exterior region.

Can a solution in the exterior region be found by some other means?
Since the problem is two-dimensional, there is an analytic function f(t), where t = x+ iy,

whose real (or imaginary) part is the desired potential V (x, y). But, can we find/guess the
function f?

2.2 Surface Charges

Lacking an exterior solution we can only compute the surface charge density on the interior
surface of the circuit.

Inside the conductors (and battery) the current and electric field are parallel to the
surface, such that the normal component of the electric field inside the conductors is zero.
Then, the surface charge density (per unit length, in Gaussian units) is given by,

σinterior =
E⊥,interior

4π
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Ey,interior cosα

4π
= ± V0

8π tanα
(plates),

−Ey,interior sin θ

4π
= V0 sin θ

8π sinα
(battery on r = r0),

0 (battery on x = r0 cosα).

(8)

The charge density on the interior of the plates is uniform, with opposite signs on the two
plates.

The figure on p. 1 suggests that the charge density on the exterior of the plates is much
smaller than that on the interior, and changes sign along the plates. If the potential (5) is
approximately valid in the region (r > r0, |θ| < α), then for the case of a curved battery on

9As seen in the figure on p. 1, the sharp corners of the circuit at (r, θ) = (r0,±α) are associated with a
very strong local electric field in the exterior region, which is not compatible with the form of eq. (3). Also,
it appears that the battery has an electric dipole moment.
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the surface (r0, |θ| < α), E⊥,exterior = Er is the same on the exterior and the interior of that
surface, σexterior ≈ V0 sin θ/8π sinα = σinterior. For the case of a planar battery on the surface
(x = r0 cos α, |y| < r0 sinα), the exterior surface charge density is similar, i.e., nonzero.

2.3 Magnetic Field and Poynting Vector

The electrical current in the system flows in loops in the x-y plane, so the magnetic field is
that of a uniform solenoid with a noncircular cross section. A computation of the magnetic
field B via the Biot-Savart law involves pairs of current elements equidistant in z from the
observation point, such that the x- and y-components of the field from each pair cancel, and
the field is only in the z-direction. Then, use of the integral form of Ampère’s law tells us
that the magnetic field is zero in the exterior region, and is the same in the interior region
as for a cylindrical solenoid,

Bz,interior =
4πI

c
(9)

in the interior, where I is the current per unit length in the circuit.10

The Poynting vector [39] is nonzero only in the interior region, where the electric field is
given by eq. (6) for batteries that obey a suitable boundary condition,

Sinterior =
c

4π
Einterior × Binterior = − V0I

2r0 sinα
x̂. (10)

The flux of energy from the battery to the resistive plates is uniform, flowing in straight lines
parallel to the −x axis as sketched on p. 4. The total power delivered (per unit length) is,

P =

∫ r0 sinα

−r0 sin α

|Sinterior| dy = V0I. (11)

That is, all the power, V0I , consumed by the resistive plates is delivered to them via the
energy flow of the electromagnetic field, as described by the Poynting vector.11,12

2.4 Momentum

The Poynting vector also has the significance of being c2 times the density of momentum
in the electromagnetic field,13 so that nonzero field momentum (in the −x direction, and of

10See, for example, http://physicspages.com/2013/02/22/solenoid-with-arbitrary-cross-section/, or sec. 10.2.2
of [46].

11The resistance R (with dimensions of Ohm-cm) of the plates has not been needed in the preceeding
analysis, although it is required to determine the current I = V0/2R (per unit length) and the magnetic field
Bz = 2πV0/cR.

12An energy-flow velocity can be defined as vflow = S/u, where u = (E2 + B2)/8π is the energy density
of the fields. If we take R = 30 Ohm-cm = 1/c Ohm-cm, then,

vflow =
16πr0 sin α

1 + (16πr0 sin α)2
c ≤ c

2
. (12)

13This was first noted by J.J. Thomson in 1891 [47]. See also [48].

5



order 1/c2) is associated with the circuit. This is surprising in that the circuit appears to be
“at rest”, meaning that its center of mass/energy is at rest,14 and systems “at rest” should
have zero total momentum.

The circuit must contain another form of momentum, which was called “hidden mo-
mentum” by Shockley [49]. In examples like the present, the mechanical momentum of the
moving charges of the electrical current does not sum to zero, but is of order 1/c2 (and
so can be called a “relativistic” effect) and equal and opposite to the electromagnetic field
momentum, such that the total momentum of the system is zero. Details for a circuit with
a battery and resistor are discussed in [28]. The idealized case of a circuit with no battery
or resistor, in an external electric field, is considered in [50]. General comments on “hidden
momentum” are given in [51].

Thanks to David Griffiths and Mark Heald for e-discussions of this problem.
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