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1 Problem

In 1935, Yukawa [1] postulated that the static force which holds nucleons together in nuclei
can be related to a scalar potential, φg = g e−µr/r, where g is a “nuclear charge”.1

Suppose we attribute all of the proton’s rest energy, mpc
2, to the energy of its nuclear

force field,2 where c is the speed of light in vacuum and mp is the rest mass of the proton.
What would this mass be if the proton were a spherical shell of radius ap?

Hint: U =
∫

ρφ dVol/2 still holds, where ρ = density of nuclear charge.
Relate ρ to φ via an appropriate generalization of Poisson’s equation, ∇2φ = −4πρ, where

ρ is the volume density of charge. You should find U =
∫

[(∇φ)2 + μ2φ2] dVol/8π.
In quantum theory, the coupling constants e2/�c = α ≈ 1/137 and g2/�c play important

roles. Given that mp/me = 1836, estimate the pion-nucleon coupling constant g2/�c sup-
posing the proton is a spherical shell of nuclear charge of radius ap = 0.86 × 10−13 cm, and
the electron is a spherical shell of electric charge of radius such that all of the electron’s rest
mass, me, is electromagnetic.

This estimate agrees fairly well with experiment. Is this physics or numerology?

2 Solution

Poisson’s equation in electrostatics, for the potential φe due to a static density ρe of electric
charge, is,3

∇2φe = −4πρe. (1)

Yukawa’s equation [1, 2] for the static nuclear potential φg is (∇2 − μ2)φg = 0, away from a
point source of nuclear charge g at the origin, for which,

φg = g
e−µr

r
, (2)

for some constant μ (with dimensions of inverse length). Away from the origin,

∇2φg =
1

r

∂

∂r2
(rφg) = μ2φg, (3)

1For a brief introduction to Yukawa theory by the author, see p. 226 of [2].
2The mass of the neutron is about 0.14% higher than the mass of the proton, which suggests that the

energy of the proton’s electromagnetic field does not contribute significantly to its mass.
3See, for example, pp. 10-10a of [3].

1



while close to the origin, φg ≈ g/r, for which,

∇2φg ≈ g∇2(1/r) = −4πg δ3(r) (4)

recalling that ∇2(1/r) = −4π δ3(r).4

This suggests that in case of a (static) volume density ρg of nuclear charge, the Yukawa
potential is,

φg(r) =

∫
ρg(r

′) e−µ|r−r′|

|r − r′| dVol′, (5)

and Poisson’s equation becomes,5

(∇2 − μ2)φg = −4πρg. (6)

The concept of the potential is that the interaction energy of two (point) charges g1 and
g2 is,

U12 = g1φg,12 = g2φg,21. (7)

For a collection of particles, this leads to the interaction energy,

U =
1

2

∑
i,j

giφg,ij →
1

2

∫
ρg(r)φg(r) dVol. (8)

Then, with ρg from eq. (6), we have, recalling that φg∇2φg = ∇(φg∇φg) − (∇φg)
2, and

using Gauss’ theorem,

U = − 1

8π

∫
φg(∇2 − μ2)φg dVol =

1

8π

∫ [−∇(φg∇φg) + (∇φg)
2 + μ2φ2

g

]
dVol

=
1

8π

∫ [
(∇φg)

2 + μ2φ2
g

]
dVol, (9)

for a charge distribution that is nonzero only within a bounded volume, such that φg∇φg ∝
1/r3 for large r.

We now consider a nuclear charge g that is uniformly distributed over a spherical shell
(about the origin) of radius a. At a point on the z-axis at distance r from the origin,

φg(r) =

∫ 1

−1

d cos θ
g

2

e−µR

R
, (10)

4See, for example, pp. 39-40 of [4].
5Equation (6) is sometimes called the screened Poisson equation.
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where,

R2 = a2 + r2 − 2ar cos θ, 2R dR = −2ar d cos θ, (11)

and when cos θ = ±1, R = a + r, |a − r|. Hence,

φg(r > a) =
g

2ar

∫ r+a

r−a

dR e−µR =
g

2μar
(e−µ(r−a) − e−µ(r+a)) = μg

sinhμa

μa

e−µr

μr
, (12)

φg(r < a) =
g

2ar

∫ a+r

a−r

dR e−µR =
g

2μar
(e−µ(a−r) − e−µ(a+r)) = μg

e−µa

μa

sinhμr

μr
. (13)

For μ = 0 we recover the form for ordinary electrostatics of a spherical shell of electric charge
q, φ(r > a) = q/r, while φ(r < a) = q/a.

The gradient of the potential (12)-(13) is purely radial,

∇φg,r(r > a) = μ
∂φg(r > a)

∂μr
= −μg sinhμa

a

(
e−µr

μ2r2
+

e−µr

μr

)
, (14)

∇φg,r(r < a) = μ
∂φg(r < a)

∂μr
= −μg e−µa

a

(
sinh μr

μ2r2
− cosh μr

μr

)
, (15)

and the field energy (9) is, noting that sinh2 x = (cosh 2x − 1)/2, 2 sinh x cosh x = sinh 2x,
and cosh2 x = (cosh 2x + 1)/2,

U =
g2 sinh2 μa

2μa2

∫ ∞

µa

(μr)2 d(μr) e−2µr

(
1

μ4r4
+

2

μ3r3
+

2

μ2r2

)

+
g2 e−2µa

2μa2

∫ µa

0

(μr)2 d(μr)

(
cosh 2μr − 1

2μ4r4
− sinh 2μr

μ3r3
+

cosh 2μr

μ2r2

)

=
g2

2μa2

cosh 2μa − 1

2
e−2µa

(
1 +

1

μa

)
+

g2 e−2µa

2μa2

(
1 − cosh 2μa

2μa
+

sinh 2μa

2

)

=
g2 e−2µa

2μa2

(
cosh 2μa − 1 + sinh 2μa

2

)
=

g2(1 − e−2µa)

4μa2
, (16)

using Dwight [5] 568.2 and 678.12. If μ → 0, this goes to g2/2a, as expected from electro-
statics.

Applying this model to a proton, its rest mass would be,

mp =
Up

c2
=

g2(1 − e−2µap)

4μa2
pc

2
, (17)

where ap is the radius of the proton (taken to be a spherical shell of nuclear charge).
In nuclear interactions, the range of the Yukawa interaction is about the same as the

radius of the proton, ap ≈ 0.86× 10−13 cm,6 i.e., μap ≈ 1, in which case Up ≈ g2/4ap for our
model of a proton as a spherical shell of nuclear charge.

6https://en.wikipedia.org/wiki/Proton_radius_puzzle
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For an electron modeled as a spherical shell of electric charge e of radius ae, the electric-
field energy Ue = e2/2ae equals the electron rest mass (times c2) for ae = re/2 = 1.4× 10−13

cm, where re = mec
2/e2 is the so-called classical election radius.7

Experimentally, mp/me = 1836, so our models imply that,

mp

me
≈ g2/4ap

e2/2ae
,

g2

�c
≈ e2

�c

mp

me

2ap

ae
≈ 1

137
· 1836 · 2 · 0.86

1.4
≈ 16.5. (18)

This compares fairly well with the experimental value of ≈ 14.2.8

However, the above discussion was for a repulsive Yukawa potential, which doesn’t explain
why nucleons stick together. If we change the sign in eqs. (2) and (5) to have an attractive
potential, then the field energy (9) would be negative, which seems unphysical. Hence, the
model presented in this problem cannot be taken too seriously.
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