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Accuracy of Measurements

in the Muon-Collider Cooling Experiment

1 Combined Accuracy

Ignoring correlations, the 6-dimensional emittance ε of the muon beam is the product of
the variances (second-moments) of the projections of the muon population on the 6 axes x,
x′, y, y′, E and t. In this note we label a variance by σ2

i where i indicates one of the six
phase-space axes. We call σi the rms width. The uncertainty in σi is labelled δσi. Then the
emittance is

ε =
6∏

i=1

σi, (1)

and the corresponding uncertainty is

δε

ε
=

√√√√ 6∑
i=1

(
δσi

σi

)2

. (2)

Supposing the relative uncertainty is the same in all six projections, we have

δε

ε
=

√
6
δσ

σ
. (3)

In the cooling experiment it is proposed to demonstrate a factor of two reduction in the
6-d emittance. Before this large a reduction is observed we will likely pass through stages
with smaller reduction. Hence the measurement uncertainty, δε/ε, should be much less than
1/2; a goal of 3% uncertainty has been set. Then eq. (3) implies that the relative uncertainty
in the rms width of the projection of phase space onto each of the six axes should be only
1%.

2 Effect of Detector Resolution

For several phase-space axes the desired relative uncertainty in the rms width of 1% is smaller
than the ratio of the rms width σD of the detector resolution function to the rms width σi

off the projected distribution, That is, σD/σi > 0.01. Typically, multiple scattering is the
cause of poor detector resolution. How well can σi be measured in this case?
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In the gaussian approximation, the observed rms width σO of the projected phase-space
distribution is sum in quadrature of the ‘true’ rms width σi and the rms width σD of the
detector resolution:

σ2
O = σ2

i + σ2
D. (4)

We suppose that σD is known to an accuracy δσD
. Then we extract the desired rms width

σi according to
σ2

i = σ2
O − σ2

D. (5)

We now wish to characterize the uncertainty δσi. From eq. (5) we find

δ2
σ2

i
= δ2

σ2
O

+ δ2
σ2

D
. (6)

Next, the uncertainty in the observed variance σ2
O after a set of N measurements is1

δσ2
O

=

√
2

N
σ2

O =

√
2

N

(
σ2

i + σ2
D

)
. (7)

Then noting that δσ2 = 2σδσ we find the key result:

(
δσi

σi

)2

=
1

2N

(
1 +

σ2
D

σ2
i

)2

+
(

σD

σi

)4
(

δσD

σD

)2

. (8)

2.1 Perfectly Known Resolution

In the limit that the detector resolution is completely understood we have δσD
= 0 and the

relative uncertainty in the rms width σi is

δσi

σi
=

√
1

2N

(
1 +

σ2
D

σ2
i

)
. (9)

If the detector resolution σD is larger than the rms width σi we wish to measure, the number
of events required to achieve a specified accuracy, δσi/σi varies as the fourth power of the
ratio σD/σi.

Thus there is a severe statistical penalty unless

σD < σi. (10)

However, once this relation (10) is satisfied,

δσi

σi
≈
√

1

2N
. (11)

In this case, about 10,000 measurements would be required to reach a 1% relative uncertainty
in σi

If, say, only 1% of the beam muons occupy the relevant part of phase space, a typical
run would require measurement of 106 muons.

1See sec. 2.2 of the chapter on Probability, Statistics and Monte Carlo of the Review of Particle Properties.
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2.2 Large-N Limit

In the other limit that counting statistics, but not detector resolution, can be neglected, we
have

δσi

σi
=
(

σD

σi

)2 δσD

σD
=

σD

σi

δσD

σi
. (12)

The second form of eq. (12) tells us that the uncertainty in the rms width σi can not be
less than the ratio σD/σi times the uncertainty in the detector resolution. Good results can
only be obtained if σD/σi is less than one, and if this ratio is much less than one very good
results are possible.

2.3 Maximum Acceptable Detector Resolution

To achieve the goal of measurement accuracy δσi/σi = 0.01, we require that the effect of
detector resolution be no more than half in quadrature, i.e., δσi/σi < 0.007 as the number
of measurements grows large.

We also suppose that the uncertainty in the detector resolution function will be no more
than 20%:

δσD

σD
< 0.2. (13)

Then eq. (12) tells us that the detector resolution must obey

σD <

√√√√ δσi/σi

δσD
/σD

σi = 0.19σi. (14)

The first part of expression (14) indicates that if we know the detector resolution function
to the same accuracy as we desire for δσi/σi then the detector resolution can be the same as
σi. In particular,

If
δσD

σD
< 0.01, then we can have σD ≈ σi and

δσi

σi
= 0.01. (15)

3 Implications

We now consider the specific implications of the previous analysis to measurements of the
various phase-space projections. Table 1 lists various parameters of the phase space to be
explored in the cooling experiment.

The criterion (14) then requires the detector resolution to have values listed in Table 2.
The more demanding requirements are on the momentum and time measurements. Suppos-
ing the bend angle in the momentum-analysis dipole is θx ≈ 1 radian, then we can use the
relation σP/P = σθ/θ to convert the requirement on σP,D to one on the resolution in angle,
namely σx′,D = 6 mrad. This is only slightly stronger than the direct requirement on σx′,D.
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Table 1: Phase-space parameters of the FOFO-channel cooling experiment.

Parameter Input Output
Value Value

P (MeV/c) 165 165
E (MeV) 198 198
γ 1.85 1.85
β 0.84 0.84
γβ 1.56 1.56
εx,N = εy,N (π mm-mrad) 1200 600
εx = εy (π mm-mrad) 769 385
σx = σy (mm) 10 10
σx′ = σy′ (mrad) 77 39
σP/P 0.03 0.04
σE/E = β2σP/P 0.021 0.028
σt (cm) 1 1.2
σt = σt/βc (ps) 40 48

Table 2: Required detector resolution to achieve measurement accuracy of
1% on the rms widths σi, assuming the detector resolution function is known
to 20%, i.e., δσD

/σD = 0.2. According to eq. (14), the required detector
resolution σD varies as the reciprocal of the square root of the uncertainty
δσD

in the resolution. The requirement on the momentum resolution σP,D/σP

leads to a second requirement on the angular resolution σx′,D.

Parameter Value

σx,D = σy,D 2 mm
σx′,D = σy′,D 8 mrad
σP,D/P 0.006
[⇒ σx′,D 6 mrad]
σz,D 2 mm
σt,D 8 ps
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