

Can we share a muon source among NF, MC and low energy muon programs?

some food for thought & discussion

INTRODUCTION

- Muon Colliders & Neutrino Factories both require a front-end based on:
 - High intensity (MW-class) proton source.
 - Target station & decay channel.
 - System that rapidly manipulates the muon beam (bunching, phase rotation and cooling) before acceleration.
- Present NF/MC front-end designs promise O(10¹⁴) muons/sec

NF/MC MUON RATES: EXAMPLE

MARS simulations yield 0.2 positive muons/p at end of decay channel ...momenta O(100 MeV/c), occupying large longitudinal & transverse phase space.

	s = 25 m	s = 50 m	s = 75 m	s = 100 m	s = 125 m
μ^+/P	0.16	0.20	0.21	0.21	0.22
μ^-/P	0.16	0.20	0.21	0.21	0.21
π^+/P	0.095	0.051	0.030	0.020	0.014
π^-/P	0.087	0.044	0.025	0.016	0.011

DECAY CHANNEL SPECTRA

Charged particle fluxes corresponding to 1.6 x 10²² POT at 8 GeV

> Brice, Geer, Paul & Tayloe hep-ex/0408135

NF/MC MUON RATES: ISS NF FRONT-END

- At the end of the bunching, phase-rotation & NF cooling channel (ISS Design) calculate 0.07 positive muons per 8 GeV proton (& same number of negative µs).
- •For 1MW proton beam, these rates correspond to:
 - $\sim 1.5 \times 10^{14}~\mu^+$ per sec at end of decay channel $\sim 5 \times 10^{13}~\mu^+$ per sec at end of NF cooling channel

International scoping study of a future Neutrino Factory and superbeam facility: Summary of the Accelerator Working Group

The ISS Accelerator Working Group

December 2007

RAL-TR-2007-023

POSSIBLE MUON SOURCE EVOLUTION

- PRESENT CAPABLITY
 - 108 muons/sec at PSI
- NEXT STEPS (in next 10 years)
 - Proton sources: O(10KW) O(100KW)
 - 10¹¹ 10¹² muons/sec for mu2e/COMET
- NF/MC FRONT-END
 - Proton Source: few MW (typically 4MW)
 - few ×10¹⁴ muons/sec

CAN FUTURE MUON EXPERIMENTS USE THE FLUX?

Example: Charged LFV

- LFV sensitivity seems to be increasing at the rate of an order of magnitude / decade.
- Nth generation expts being proposed now, & (N+1)th generation expts dreamt of.
- If the trend continues, guess that (N+2)th generation expts would benefit from MC/NF frontend muon source intensity/brightness.
- A muon source with 10% of the NF/MC intensity would also be very interesting.

Example: Charged Lepton Flavor Violation

LOW ENERGY MUON EXPERIMENTS

Experiment	Charge	Intensity (μ/10 ⁷ sec)	Pulse width (ns)	Pulse interval (μs)	Energy (MeV)	Mom. spread (%)	Polarization n/a	Note	Table from NUFACT05
$\mu \rightarrow e \gamma$	+	10 ¹⁵	DC	≤1	1	≤10	Depol	e comt	ami. ≤ 10-2, beam size cm
$\mu N {\to} e N \ (MECO \ type)$	_	10^{21}	10-100	1-1000	≤20	≤10	n/a		
$\mu N {\to} e N \ (PRISM \ type)$	_	10 ²⁰	10-100	1-1000	≤20	3	n/a	π comt	ami. ≤ 10-15, beam size cm
g-2	±	10 ¹⁵	≤15	≥1000	3100	10 ⁻²	Pol ~100%		
edm	±	10 ¹⁸	≤50	≥1000	200-400	10 ⁻³	Pol >50%	(NP ²)	• dµ<10-24 e.cm → NP2>1016 total
μ lifetime	+	10^{14}	~100	30-100	4	1-10	π beam		
μ lifetime (π)	+	10^{14}	~100	30-100	4	1-10	100%		
Michel parmammeter	+	10^{16}	≤0.5	≥0.02	30-40	1-3	~100%		
Pol param.	+	10^{16}	≤0.5	≥0.02	30-40	1-3	Pol		
μ-atoms	_	10^{16}	≤100	100-1000	1-4	1-5	n/a	e comt	ami. ≤ 10-2, beam size cm
Life science	-	10^{15}	1	100-1000	1-4	1-5	n/a	beam s	ize mm
μCF	_	10 ¹⁹	1	≥1000	≥100				
μSR	±	$10^9/s$	DC	-	4	1-5	~100%		
μSR	±	$10^{10\text{-}20}/\text{s}$	0.001	100	4	1-5	~100%		

LOW ENERGY MUON EXPERIMENT NEEDS

- Wide spectrum of potential future muon experiments, with different beam needs
 - Intensities
 - Muon energies
 - Polarization requirements
 - Bunch structures
- In particular, flexibility is desirable for the muon beam bunch structure – suggest a flexible primary proton beam bunch structure is desirable

PROTON SOURCE REQUIREMENTS

- NF/MC front ends need
 - Optimum energy: $5 < E_p < 15$ GeV (Muons/MW falls only slowly for $E_p > 15$ GeV)
 - -Short proton bunches: σ_t < 3ns
 - -Multi-MW beam powers (typically 4MW)
- Low energy muon experiments have different needs
 - –Example: μ 2e/COMET needs E_p ~ 8 GeV, $\sigma_t \leq$ ~100ns
- Desired Rep. Rates Vary
 - –ISS NF: 3 or 5 bunches × 50Hz
 - –MC rep rates still being studied typically 10 100 Hz
 - $-\mu$ 2e/COMET bunch spacing = O(1 μ s)
- Can we design a proton source with sufficiently flexible bunch structure to satisfy all these needs?
 - -Two rings for accumulation/rebunching?

STAGING

- For illustration, consider a scenario recently developed in the U.S. for the Fermilab long range steering group, and presentations to the recent HEPAP P5 subpanel.
 - This is a Fermilab-based scenario, but the general picture is applicable to any other lab thinking about the path to a MC.
 - The illustrative staging scenario is based on the recent NF International Scoping Study (ISS) baseline design, recent work on a low energy NF, and the latest R&D planning from the U.S. NF and MC Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF).

ILLUSTRATIVE STAGING SCENARIO

MUON COLLIDER TEST FACILITY

Illustrative Staging Scenario Step 2:

 However, in general phase rotation & cooling require bunch structures different from low energy muon experiments →

MUON COLLIDER TEST FACILITY & MUON EXPERIMENTAL HALL

COST CONSIDERATIONS

- A full NF/MC target/decay/phase-rotation/bunching /cooling setup is probably overkill for a test facility
- Need to think about minimal (upgradable?) setup
 - –Target station cost dominated by concrete → upgrade path possible from low to high intensity? (full target station + decay channel estimated at 116M\$ (FY08) unloaded).
 - -Cheaper (upgradable ?) versions of bunching/phase-rotation/cooling channels desirable (full versions estimated 350-420M\$ (FY08) unloaded).
 - → Is there a cheaper test bunching/phase rotation solution?
 - → Should the cooling channel be included (or perhaps a short channel is the first experiment in the MC R&D hall?

HOMEWORK ASSIGNMENT

- FOR A MULTI-MW PROTON SOURCE, DESIGN A REBUNCHING SCHEME, TARGET STATION & DECAY CHANNEL THAT:
 - Delivers ~10¹³ muons/sec to a muon experimental hall, with flexible bunch structure.
 - -Is as cheap as possible.
 - –Is upgradable to a NF/MC-class facility.

SUMMARY

- Can we share a muon source among NF, MC and low energy muon programs?
- Motivates thinking about:
 - -Flexible proton rebunching scheme
 - –Cost effective solution for staging & the minimal (& possibly upgradable) Muon Collider R&D Test Facility
 - -Requirements for a low energy muon experiment facility delivering ~10¹³ μ/sec
- No definitive answers, but some food for thought