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What is a Muon Collider?

An accelerator complex in which

• Muons (both μ+ and μ−) are collected from pion decay

following a pN interaction.

• Muon phase volume is reduced by 106 by ionization cooling.

• The cooled muons are accelerated and then stored in a ring.

• μ+μ− collisions are observed over the useful muon life of

≈ 1000 turns at any energy.

• Intense neutrino beams and spallation neutron beams are

available as byproducts.

Muons decay: μ → eν ⇒

• Must cool muons quickly (stochastic cooling won’t do).

• Detector backgrounds at LHC level.

• Potential personnel hazard from ν interactions.
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Footprints

A First Muon Collider to study light-Higgs production:
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The Case for a Muon Collider

• More affordable than an e+e− collider at the TeV (LHC) scale.

• More affordable than either a hadron or an e+e− collider for

(effective) energies beyond the LHC.

• Precision initial state superior even to e+e−.
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• Initial machine could produce light Higgs via s-channel:

Higgs coupling to μ is (mμ/me)
2 ≈ 40, 000× that to e.

Beam energy resolution at a muon collider < 10−5,

⇒ Measure Higgs width.

Add rings to 3 TeV later.

• Neutrino beams from μ decay about 104 hotter than present.
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Future Frontier Facilities

(Will the U.S. have one?)

• Hadron collider (LHC, SSC): ≈ $100k/m [magnets].

≈ 2 km per TeV of CM energy.

Ex: LHC has 14-TeV CM energy, 27 km ring, ≈ $3B.

• Linear e+e− collider (SLAC, NLC(?)): ≈ $200k/m [rf].

≈ 20 km per TeV of CM energy;

But a lepton collider needs only ≈ 1/10 the CM energy

to have equivalent physics reach to a hadron collider.

Ex: NLC, 1.5-TeV CM energy, 30 km long, ≈ $6B (?).

• Muon collider: ≈ $1B for source/cooler + $100k/m for rings

Well-defined leptonic initial state.

mμ/me ≈ 200 ⇒ Little beam radiation.

⇒ Can use storage rings.

⇒ Smaller footprint.

Technology: closer to hadron colliders.

≈ 6 km of ring per TeV of CM energy.

Ex: 3-TeV muon collider ≈ $3B (?).
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Technical Challenges

• 16-GeV proton driver, 15 Hz, 4-MW beam power,

1-ns bunch length.

• Targetry and Capture

• Muon Cooling

• Acceleration

• Storage rings

• Interaction region and detector design

A muon’s view of the
interaction region:
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Overview of Targetry for a Muon Collider

• 1.2 × 1014 μ±/s via π-decay from a 4-MW proton beam.

• Cooling jacket around stationary target would absorb too many

pions.

• Liquid-metal jet target: Ga, Hg, or solder (Bi/In/Pb/Sn).

• 20-T capture solenoid followed by a 1.25-T π-decay channel

with phase-rotation via rf (to compress energy of the muon

bunch).
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Magnetic Bottle Around the Target

p + A → π± + X, π± → μ±ν.

• In high-energy interactions, pions are produced with average

transverse momentum P⊥ ≈ 200 MeV/c.

• Goal: Capture pions with P⊥ < 225 MeV/c.

• Solution: Surround the target with a 20-T solenoid magnet,

whose field drops to 1.25 T in the pion-decay channel.

• Peak field at upstream end of target ⇒ (some) backwards pions

reflected off the high-field region of the magnetic bottle.

• As pions advance into the weak-field region, their P⊥ drops,

⇒ Confined to smaller radii than if produced in a weak-field.

• Adiabatic invariant: Φ = πr2B as B drops from 20 to 1.25 T.

• r = P⊥/eB = radius of helix.

⇒ P⊥,f

P⊥,i
=

√√√√√√√
Bf

Bi
= 0.25, [and P‖,f > P‖,i].
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Targetry Issues

• 1-ns beam pulse ⇒ shock heating of target.

– Resulting pressure wave may disperse liquid (or crack solid).

– Damage to target chamber walls?

– Magnetic field will damp effects of pressure wave.

• Eddy currents arise as metal jet enters the capture magnet.

– Jet is retarded and distorted, possibly dispersed.

– Hg jet studied at CERN, but not in beam or magnetic field:
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• Targetry area also contains beam dump.

– Need 4 MW of cooling.

– Harsh radiation environment for magnets and rf.
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Effect of a Short Beam Pulse on a Liquid?

Will shock heating disperse the target violently?

Simple model to estimate magnitude of shock pressure wave:

Beam energy heats liquid (no heat flow);

Liquid expands causing strain (shock wave);

Liquid ‘tears’ if pressure exceeds tensile strength.

Fact: tensile strength (TS) is about 0.002E (Young’s modulus) in

most metals.

ΔU [J/gm] = CΔT =
C

α

Δl

l
=

C

α

P

E
≈ 0.002

C

α
,

when P = TS:

Ex: Gallium: α ≈ 2 × 10−5/K; CP ≈ 0.3 J/gm-K, tears when

ΔU ≈ (0.002)(0.3)/(2 × 10−5) ≈ 30 J/gm.

This is roughly the nominal energy deposition in the target!
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Magnetohydrodynamics

Field E′ inside a conductor with velocity v � c in field B:

E′ = E + v × B, (MKSA).

∇×E = −∂B

∂t
, ∇×B = μ0j, j = σE′ = σ(E+v×B),

⇒ ∂B

∂t
=

∇2B

μ0σ
+ ∇× (v × B).

⇒ Field diffusion time into long cylinder: τ = μ0σr2.

Ex: σHg = σcopper/50, r = 1 cm,

⇒ τ ≈ 4π × 10−7 · 106 · (10−2)2 ≈ 10−4 s.

Magnetic Reynolds number : R =
τv

D
≈ 10−4s · 10m/s

0.3m
= 0.003,

for motion through a solenoid of diameter D = 0.3 m.

⇒ The liquid is a “poor” conductor, and the field penetrates

quickly.
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Eddy Current Effects on Conducting Liquid Jets

• In frame of jet, changing magnetic field induces eddy currents.

• Lenz: Forces on eddy current oppose motion of jet.

• Longitudinal drag force ⇒ won’t penetrate magnet unless jet

has a minimum velocity: σ = σCu/60, ρ = 10 g/cm3, ⇒

vz,min ≈ σr2B2
0

6ρD
≈ 60 m/s

⎡
⎣ r

1 cm

⎤
⎦
⎡
⎣ r

D

⎤
⎦
⎡
⎢⎣ B0

20 T

⎤
⎥⎦
2

.

Ex: B0 = 20 T, r = 1 cm, D = 20 cm, ⇒ vmin = 3m/s.

• Drag force is larger at larger radius ⇒ planes deform into cones:

Δz(r)

r
≈ σr2B2

0α

12ρvz
≈ −3α

⎡
⎣ r

1 cm

⎤
⎦
⎡
⎢⎣ B0

20 T

⎤
⎥⎦
2 ⎡⎢⎢⎣

10 m/s

v

⎤
⎥⎥⎦ .

Ex: α = L/D = 2, r = 1 cm, v = 10 m/s ⇒ Δz = 6 cm.

• Radial pressure: compression as jet enters magnet, expansion

as it leaves:

Pr ≈ σr2B2
0vz

8D
≈ 50 atm.

⎡
⎣ r

1 cm

⎤
⎦
⎡
⎣ r

D

⎤
⎦
⎡
⎢⎣ B0

20 T

⎤
⎥⎦
2 ⎡
⎢⎢⎣

v

10 m/s

⎤
⎥⎥⎦ .

Ex: P = 2.5 atm for previous parameters.

• Will the jet break up into droplets?
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• Jet at angle θ to magnet axis ⇒ transverse drag.

But, Δvx = Δvz/8.
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V z ,–∞ = 3Δ V z

Edge of Solenoid Center of Solenoid

⇒ θ increases as jet enters magnet.

Ex: α = 2, v = 3Δvz ⇒ θin = 1.5θout.

• Drag and shear are smaller for larger initial velocity,

but pressure rises with velocity.

• Is there a safe working regime?

• Need both FEA analysis and lab tests.
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Magnetic Damping of Radial Perturbations

If jet blows apart radially, the flux thru rings of metal changes,

⇒ Eddy current damping.

⇒ ΔPr,damp ≈ σrvrB
2
0.

Ex: Radial pinch ⇒ vr ≈ σrB2
0

4ρ
,⇒ Pr,damp ≈ σ2r2B4

0

4ρ
>∼ Pr,pinch.

Ex: If beam shock ⇒ vr ≈ 1, 000 m/s,

then Pr,damp ≈ 4 GPa ≈ TS,steel.

Also, a strong magnetic field damps the Rayleigh instability (breakup

of a jet into droplets due to surface tension) [Chandrasekhar].

Will test liquid jets in proton beam at Brookhaven National Lab,

and in 20-T magnet at National High Magnetic Field Lab.
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Ionization Cooling

• Ionization: takes momentum away.

• RF acceleration: puts momentum back along z axis.

• ⇒ Transverse “cooling”.

Particles are slowed along their path (dE/dx)

Particles are accelerated longitudinally

• Use channel of LH2 absorbers, rf cavities and alternating solenoids

(to avoid buildup of angular momentum).
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Ionization Cooling Theory

Transverse cooling by ionization, heating by multiple scattering:
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dεN,⊥
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= − 1

β̄2

dEμ

ds

εN,⊥
Eμ

+
β⊥(0.014)2

2β̄3Eμmμ LR
,

εN,⊥ = σxσPx/mμc = normalized transverse emittance,

β̄ = v̄/c, γ̄ = 1/
√
1 − β̄2

β⊥ = σx/σx′ = Betatron function at the absorber,

ε⊥ =
εN,⊥
γ̄β̄

, σx =
√
ε⊥β⊥, σx′ =

σPx

P̄
=

√√√√√√
ε⊥
β⊥

,
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LR = Radiation length of absorber.

⇒ Equilibrium εN,⊥ ∝ β⊥
β̄LR(dEμ/ds)

.

⇒ Low-Z absorber (liquid hydrogen is best),

⇒ Put absorber at low-β⊥ (beam-waist) where angles are large,

so multiple scattering hurts less.

⇒ Need strong focusing (15-T solenoids, Li lens...).

Economics favor β̄ < 1, γ̄ ≈ 1, since must restore the beam

energy (∝ γ̄ − 1) many times.

However, β(dEμ/ds) ∝ β−2/3 for low β, so cooling is less effective

at smaller β.

Present scenario: Cool at β̄ = 0.86, Pμ = 180 MeV/c,

KE = 100 MeV.

18



The Angular Momentum Problem

A solenoid with field Bz has vector potential Aφ = rBz/2.

The canonical momentum, Π = P + eA/c), is conserved.

The canonical angular momentum L is also conserved:

L = r× Π = r × (P + eA/c).

⇒ Lz = rΠφ = rPφ + er2Bz/2c.

So, if the mechanical transverse momentum, Pφ, has been “cooled”

to zero inside the solenoid, the charge will emerge with

Lz,out = Lz,in = er2Bz,in/2c.

⇔ The fringe field of the solenoid imparts an undesirable kick.
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Solution: Alternating Solenoids

Suppose after leaving field Bz, the beam enters field −Bz. Then,

er2Bz,in/2c = Lz,1 = Lz,2 = rPφ,2 − er2Bz/2c,

⇒ Pφ,2 = erBz/c.

Now, if cool in region 2 until P ′
φ,2 = erBz/2c, and exit, the particle

will end up with Pφ = 0.

a) c) d)b)
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2
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P

0

0

0

0

PR0
P

In practice, alternate the fields many times, keeping the canonical

momentum always near zero, while the mechanical momentum

undergoes damped oscillations.
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Cooling in a Channel of Alternating Solenoids
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But the Energy Spread Rises due to “Straggling”

d(ΔEμ)2

ds
= −2

d
(
dEμ

ds

)

dEμ
(ΔEμ)2 +

d(ΔEμ)2straggling

ds
.

• Both terms are positive if operate below minimum of dEμ/ds

curve.

• ⇒ Must exchange longitudinal and transverse emittance

frequently to avoid beam loss due to bunch spreading.

• Can reduce energy spread by a wedge absorber at a momentum

dispersion point:

Absorber wedge

Nominal energy

Energy too high

Energy too low

 Equal energies

[6-D emittance constant (at best) in this process.]
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Emittance Exchange Via Wedges + Bent Solenoids
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Simulated Cooling Performance

Factor of 2 reduction in 6-d emittance in a 20-m stage.

Factor of 10−5 reduction in 30 stages.
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Cooling in Lithium Lenses

Alternating-solenoid scheme becomes difficult after ≈ 25 stages.

But more cooling is desirable ⇒ use lithium lenses.

x, y
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1 0 m
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F O F O

Li Lens
 ~1m

Li Lens
 ~1m

First  Li  Lens Cool ing

1 0 m
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Cooling, Cooling, Cooling!

Ionization cooling, in which unwanted beam momentum is

transferred to atomic electrons, was “invented” by G.K. O’Neill

in 1956 when he first proposed storage rings for colliding beams;

Phys. Rev. 102, 1418 (1956).

It was quickly realized that nuclear interactions made ionization

cooling impractical for beams of electrons and protons.

In the late 1950’s, Lyman Spitzer noted that a beam of protons

could be “cooled” by a co-propagating beam of electrons,

particularly if the velocity of the two beam were equal.

This process is now called “electron cooling”, and was developed

in Russia by G.I. Budker. It is a variant of ionization cooling in

that electrons again take up the unwanted beam momentum.

A practical competitor to electron cooling is “stochastic cooling”,

invented by S. Van Der Meer. A variant, “optical stochastic

cooling”, may be eventually used at a muon collider.
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