

http://puhep1.princeton.edu/mumu/

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ⁺ and μ⁻) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Muons decay: $\mu \to e\nu \implies$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

A First Muon Collider to study light-Higgs production:

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Initial machine could produce light Higgs via s-channel: Higgs coupling to µ is (mµ/me)² ≈ 40,000× that to e. Beam energy resolution at a muon collider < 10⁻⁵, ⇒ Measure Higgs width. Add rings to 3 TeV later.

• Neutrino beams from μ decay about 10⁴ hotter than present.

Princeton Efforts

• Tests of a gallium jet as the primary target for the 4-MW proton beam.

• Detector development for the muon cooling demonstration experiment.

• Development of a low-pressure time-projection chamber.

• Development of a 10-psec timing system using Čerenkov light viewed by microchannel-plate photomultipliers.

 $\sigma_t = \sqrt{(42/2.35)^2 - (8.5)^2)} = 16$ ps, after removing 8.5 ps due to jitter of the reference diode.

An R&D Program for Targetry and Capture

at a Muon Collider Source

A PROPOSAL TO THE BNL AGS DIVISION

David Brashears,^h Kevin Brown,^b Michael Cates,^h John Corlett,^f Adrian Fabich,^d Richard C. Fernow,^b Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,^f Juan C. Gallardo,^b Michael A. Green,^f George A. Greene,^b John R. Haines,^h Jerry Hastings,^b Ahmed Hassanein,^a Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b Changguo Lu,ⁱ Kirk T. McDonald,^{i,2} Nikolai V. Mokhov,^e Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d Bernard Riemer,^h James Rose,^b Thomas Roser,^b Joseph Scaduto,^b Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,^h Iuliu Stumer,^b Peter Thieberger,^b James Tsai,^h Thomas Tsang,^b

^aArgonne National Laboratory, Argonne, IL 60439
^bBrookhaven National Laboratory, Upton, NY 11973
^cUniversity of California, Los Angeles, CA 90095
^dCERN, 1211 Geneva, Switzerland
^eFermi National Laboratory, Batavia, IL 60510
^fLawrence Berkeley National Laboratory, Berkeley, CA 94720
^gMichigan State University, East Lansing, MI 48824
^hOak Ridge National Laboratory, Oak Ridge, TN 37831
ⁱPrinceton University, Princeton, NJ 08544

(Submitted Sept. 28, 1998)

¹Project Manager. Email: kirk@electron.cap.bnl.gov ²Spokesperson. Email: mcdonald@puphep.princeton.edu

