

DPF'99 Session 11B: Future Accelerator Projects

Muon Collider main page:

http://www.cap.bnl.gov/mumu/mu_home_page.html

Muon Collider R&D Status Report:

http://www.cap.bnl.gov/mumu/status_report.html

Princeton Muon Collider page: http://puhep1.princeton.edu/mumu/ AIP Conference Proceedings, Vols. 352, 372, 435 & 441

I Want to Believe...

- That elementary particle physics will prosper for a 2nd century with laboratory experiments based on innovative particle sources.
- That a full range of new phenomena will be investigated:
 - Neutrino mass \Rightarrow a 2nd 3 \times 3 (or larger?) mixing matrix.
 - Precision studies of Higgs bosons.
 - A rich supersymmetric sector.
 - ... And more
- That our investment in future accelerators will result in more cost-effective technology, that is capable of extension to 10's of TeV of constituent CoM energy.
- That a **Muon Collider** is the best option to accomplish the above.

Ionization Cooling

(An Idea So Simple It Might Just Work)

- Ionization: takes momentum away.
- RF acceleration: puts momentum back along z axis.
- \Rightarrow Transverse "cooling".

Particles are slowed along their path (dE/dx)

Particles are accelerated longitudinally

- Origin: G.K. O'Neill, Phys. Rev. **102**, 1418 (1956).
- But won't work for electrons or protons.
- So use muons: Balbekov, Budker, Skrinsky, late 1960's.

The Details are Delicate

Use channel of LH_2 absorbers, rf cavities and alternating solenoids (to avoid buildup of angular momentum).

The Energy Spread Rises due to "Straggling"

 \Rightarrow Must exchange longitudinal and transverse emittance frequently to avoid beam loss due to bunch spreading.

Can reduce energy spread by a wedge absorber at a momentum dispersion point:

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ⁺ and μ⁻) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Muons decay: $\mu \to e\nu \implies$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

A First Muon Collider to study light-Higgs production:

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Initial machine could produce light Higgs via s-channel: Higgs coupling to µ is (mµ/me)² ≈ 40,000× that to e. Beam energy resolution at a muon collider < 10⁻⁵, ⇒ Measure Higgs width. Add rings to 3 TeV later.

• Neutrino beams from μ decay about 10⁴ hotter than present.

Future Frontier Facilities

(A Personal Assessment)

• Hadron collider (LHC, SSC): \approx \$100k/m [magnets].

 $\approx 2 \text{ km per TeV of CM energy.}$

Ex: LHC has 14-TeV CM energy, 27 km ring, \approx \$3B.

• Linear e^+e^- collider (SLAC, NLC(?)): \approx \$200k/m [rf].

 ≈ 20 km per TeV of CM energy;

But a lepton collider needs only $\approx 1/10$ the CM energy

to have equivalent physics reach to a hadron collider.

Ex: NLC, 1.5-TeV CM energy, 30 km long, \approx \$6B (?).

• Muon collider: \approx \$1B for source/cooler + \$100k/m for rings Well-defined leptonic initial state.

 $m_{\mu}/m_e \approx 200 \Rightarrow$ Little beam radiation.

 \Rightarrow Can use storage rings.

 \Rightarrow Smaller footprint.

Technology: closer to hadron colliders.

 \approx 6 km of ring per TeV of CM energy.

Ex: 3-TeV muon collider \approx \$3B (?).

The Muon Collider Collaboration

Charles M. Ankenbrandt¹, Giorgio Apollinari², Muzaffer Atac¹, Bruno Autin³, Valeri I. Balbekov¹, Vernon D. Barger⁴, Odette Benary⁵, Scott Berg⁶, Michael S. Berger⁶, S. Alex Bogacz⁷, T. Bolton⁸, Shlomo Caspi⁹, Christine Celata⁹, Yong-Chul Chae¹⁰, David B. Cline¹¹, John Corlett⁹, Lucien Cremaldi¹², H. Thomas Diehl¹, Alexandr Drozhdin¹, Richard C. Fernow¹³, David A. Finley¹, Yasuo Fukui¹⁴, Miguel A. Furman⁹, Tony Gabriel¹⁵, Juan C. Gallardo¹³ Alper A. Garren¹¹, Stephen H. Geer¹, Ilya F. Ginzburg¹⁶, Michael A. Green⁹, John F. Gunion¹⁷, Ramesh Gupta⁹, Tao Han¹⁷, Katherine C. Harkay¹⁰, Colin Johnson³, Carol Johnstone¹, Stephen A. Kahn¹³,
Bruce J. King¹³, Harold G. Kirk¹³, Masayukiu Kumada¹⁸, Yoshitaka Kuno¹⁴, Paul LeBrun¹, Kevin Lee¹¹, Derun Li⁹, David Lissauer¹³, Laurence S. Littenberg¹³, Changguo Lu¹⁹, Alfred D Luccio¹³, Kirk T. McDonald¹⁹, Alfred D. McInturff⁹, Frederick E. Mills¹, Nikolai V. Mokhov¹, Alfred Moretti¹, David V. Neuffer¹, King-Yuen Ng¹, Robert J. Noble¹, James H. Norem^{10,1}, Blaine E. Norum²⁰, Hiromi Okamoto²¹, Yasar Onel²², Robert B. Palmer¹³, Zohreh Parsa¹³, Jack M. Peterson⁹, Yuriy Pischalnikov¹¹, Milorad Popovic¹, Eric J. Prebys¹⁹, Zubao Qian¹, Rajendran Raja¹, Pavel Rehak¹³, Thomas Roser¹³, Robert Rossmanith²³, Jack Sandweiss²⁴, Ronald M. Scanlan⁹, Lindsay Schachinger⁹, Andrew M. Sessler⁹, Quan-Sheng Shu⁷, Gregory I. Silvestrov²⁵, Alexandr N. Skrinsky²⁵, Panagiotis Spentzouris¹, Ray Stefanski¹, Sergei Striganov¹, Iuliu Stumer¹³, Don Summers¹², Dejan Trbojevic¹³, William C. Turner⁹, Andy Van Ginneken¹, Tatiana A. Vsevolozhskaya²⁵, Masayoshi Waka¹⁴, Weishi Wan¹, Haipeng Wang¹³, Robert Weggel¹³, Erich H. Willen¹³, David R. Winn²⁷, Jonathan S. Wurtele²⁸, Yongxiang Zhao¹³, Max Zolotorev⁹

¹Fermi National Laboratory, P. O. Box 500, Batavia, IL 60510

²Rockefeller University, New York, NY 10021

³CERN, 1211 Geneva 23, Switzerland

⁴Department of Physics, University of Wisconsin, Madison, WI 53706

⁵Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

⁶Physics Department, Indiana University, Bloomington, IN 47405

⁷Jefferson Laboratory, 12000 Jefferson Ave., Newport News, VA 23606

⁸Kansas State University, Manhattan, KS 66502-2601

⁹Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720

¹⁰Argonne National Laboratory, Argonne, IL 60439

¹¹University of California Los Angeles, Los Angeles, CA 90095

¹²University of Mississippi, Oxford, MS 38677

¹³Brookhaven National Laboratory, Upton, NY 11973

¹⁴KEK High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305, Japan

¹⁵Oak Ridge National Laboratory, Oak Ridge, TN 37831

¹⁶Institute of Mathematics, Prosp. ac. Koptyug 4, 630090 Novosibirsk, Russia

¹⁷Physics Department, University of California, Davis, CA 95616

¹⁸National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Japan

¹⁹Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

²⁰University of Virginia, 205 McCormick Road, Charlottesville, VA 22901

²¹N.S.R.F, Institute for Chemical Research, Kyoto University, Gokanoshou, Uji, Kyoto 611, Japan

²²Physics Department, Van Allen Hall, University of Iowa, Iowa City, IA 52242

²³DESY, Hamburg, Germany

²⁴Physics Department, Yale University, CT 06520

²⁵ Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

²⁶Department of Physics and Astronomy, SUNY, Stony Brook, NY 11790

²⁷Fairfield University, Fairfield, CT 06430

²⁸University of California Berkeley, Berkeley, CA 94720

Spokesperson: R.B. Palmer