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Abstract

Neutrino beams from the decay of muons in a storage
ring offer the prospect of very high flux, well-understood
spectra, and equal numbers of electron and muon neutrinos,
as desirable for detailed exploration of neutrino oscillations
via long baseline detectors [1]. Such beams require large
numbers of muons, and hence a high performance target
station at which a 1-4 MW proton beam of 16-24 GeV im-
pinges on a compact target, all inside a high field solenoid
channel to capture as much of the phase volume of soft pi-
ons as possible. A first concept was based on a carbon tar-
get, as reported in 2000 the Neutrino Factory Study-I [2]. A
higher performance option based on a free mercury jet has
been studied in 2001 as part of the Neutrino Factory Feasi-
bility Study-II [3, 4]. An overview of a mercury jet target
facility is presented here, including requirements, design
concept and summaries of simulated performance. Further
details are presented in related papers at this conference.

1 THE TARGET FACILITY

A muon collider [18] or a neutrino factory based on a
muon storage ring [1, 2, 3, 4] require intense beams of
muons, which are obtained from the decay of pions pro-
duced in proton-nucleus collisions. To maximize the yield,
pions of momentum near 300 MeV/c should be captured,
as illustrated in Fig. 1. For proton energies above 10 GeV,
the pion yield per unit of proton beam energy is larger for
a high-Z target [5]. For proton beam energies in the MW
range, beam heating would melt/boil a stationary high-Z
target, so a moving target must be used. A mercury jet
target is the main option considered here, although several
alternatives remain under active study [6, 7]. For greater
detail, consult Chap. 3 of [3]. See also [8].

The low-energy pions are produced with relatively large
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Figure 1: Comparison of pion yield measured in BNL E910
with a MARS calculation.

angles to the proton beam, and efficient capture into a decay
and phase rotation channel [9] is obtained by surrounding
the target with a 20-T solenoid magnet, whose field tapers
down to 1.25 T over several meters, as sketched in Fig. 2.
Pion yield is maximized with a mercury target in the form a
1-cm-diameter cylinder, tilted by about 100 mrad with re-
spect to the magnetic axis. To permit the proton beam to
interact with the target over 2 interaction lengths, the pro-
ton beam is tilted by 33 mrad with respect to the mercury
jet axis. See also Fig. 3.

A mercury pool inside the capture solenoid intercepts
the mercury jet and the unscattered proton beam, as shown
in Fig. 4. The mercury pool, surrounding tungsten car-
bide/water shielding, and the resistive insert of the 20-T
capture magnet [10] are isolated from upstream and down-
stream beamline elements by a pair of double-walled Be
windows. This entire unit can be replaced by remote ma-
nipulation should failure occur. The absorbed radiation
dose on components near the target is quite large [5], as
illustrated in Fig. 5, such that in a 4 Mw proton beam, their



Figure 2: Sketch of the target and capture system based on
a mercury jet inside a 20-T solenoid magnet.

Figure 3: The inner region of the 20-T capture magnet
along with the tilted mercury jet target and proton beam.

lifetime against radiation damage may only be 5 years.
The capture solenoid is encased in thick concrete shield-

ing as part of the target facility that includes an overhead
crane, hot cells with remote manipulation capability, and a
mercury pumping and purification loop [11], as sketched in
Fig. 6.

The use of a mercury jet target raises several novel is-
sues. The rapid energy deposition in the mercury target by
the proton beam leads to intense pressure waves that can
disperse the mercury [12, 13, 14]. Further, as the mercury
enters the strong magnetic field eddy currents are induced
in the mercury, and the Lorentz force on these currents
could lead to distortion of the jet [15, 16]. On the other
hand, the magnetic pressure on the mercury once inside the
solenoid will damp mechanical perturbation of the jet.

An R&D program is underway to assess these critical
issues [17].
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Figure 5: Absorber radiation dose in the pion capture sys-
tem per 2 × 107 s of a 1-MW, 24-GeV proton beam on a
mercury target.
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Figure 6: Sketch of the target facility.
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