USE OF IONIZATION FRICTION IN THE STORAGE OF
HEAVY PARTICLES
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This paper discusses a method for increasing the phase density of a heavy-~particie beam based on
the use of ionization energy loss. The beam is supposed to pass through a decelerating medium of low
nuclear charge which is introduced into the chamber of the storage ring. The damping decrement for beta-
tron and synchrotron oscillations because of "ionization friction" was first determined by Kolomenskii [i].
To evaluate the possibility of making practical use of this phenomenon, a more detailed investigation is
carried out in this paper which considers ‘such negative factors as Coulomb scattering, statistical fluc-
tuation of ionization losses, nuclear interactions, and the effects of charge exchange., It was asserted {2]
that these processes do not permit the use of ionization friction for compression of phase volume, At en-
ergies of several MeV, however, it turns out that conditions can be created where ionization friction pre-
dominates over competing processes and one can achieve tens of particle injection pulses into a constant
phase volume in a period less than 0.1 sec. A storagering of this type can find application in nuclear
physics,

Oscillation Decrements

We consider a proton storage ring with a chamber filled with a material the density n of which depends
on the generalized azimuth 6 and the radial coordinate x. The ionization energy loss per unit path length
is [3]
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where re = 2.82-1073 cm and Eg = 0,511 MeV are the classical radius and the rest energy of the electron;
B is the ratio of the proton velocity to the light velocity c; v = (1 — ﬁ)"1/2; Z is the atomic number; IZ is the
mean ionization potential of the atom with I ~ 13.5 eV (for hydrogen, I =14,9 eV). The density effect is
not taken into consideration herebecause the decelerating medium is considered to be sufficiently rarefied.

The guantity F coincides with the absolute value of the ionization friction force; there the equation
for vertical betatron oscillations takes on the form

U
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where w is the angular velocity; E is the total energy of the proton, g, is the usual coefficient of magnetic
rigidity; the primes indicate differentiation with respect to 6, It then follows that the oscillation amplitude
is damped like e~TZt with a decrement

oF
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The brackets (. . .) indicate averaging over a revolution,

For the radisal oscillations

vy F .
o'+ opp ¢+ gt = KR 4@

Translated from Atomnaya Energiya, Vol.31, No.1, pp.40-44, July, 1971. Original article sub-
mitted May 18, 1970.

© 1972 Consultants Bureau, o division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. I0011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. 4 copy of this article is available from the publisher for $15.00.

|

731



where K and R are the local curvature and the mean orbital radius, and the relative deviation of particle
energy from the equilibrium value, € = AE/E, satisfies the equations
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Here, V is the amplitude of the accelerating voltage; q is the multiplicity; o is the orbital expansion fac-
tor; the subscript s refers to the synchronous particle. The contribution associated with ionization fric-
tion can be written in the form
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For small synchrotron oscillations, the solution of the system (4)-(6) leads to the following expres-
sions for the decrements:
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where Ry3(9) is the closed orbit for a particle with unit deviation of momentum from the equilibrium value.

It is clear from these equations and Eq, (1) that either the radial or the synchrotron oscillations are
unstable for g < 0.7. Such instability can be suppressed by coupling the radial and vertical motions since,
according to (1), (3), (8), and (9), the sum of all decrements is positive:

- oF g 8lnF 27 E, 28 B2
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the result being independent of the type of magnetic system, in accordance with the theorem by Jacoby [4].
The quantity T' characterizes the rate of contraction of the six-dimensional phase volume; this volume is
decreased by the factor e? in the time I'"1,

Particle Beam Dimensions

Beam dimensions are determined by Coulomb multiple scattering at small angles and by statistical
fluctuations in ionization losses.

Considering oscillations along one of the axes,the time dependence of their amplitudes, including
damping, can be represented in the form:

a()=ape i 4 T D) (Aa)peitn, (in
th=<t
where (Aa)y, is the abrupt change in amplitude because of a collision at the time tp, This is a random num-
ber with zero mean, and a(t) is a random function, the mean value and standard deviation of which tends to
the limits whent — =

- i NlAa |2
ast:O’ |a|§t: T,

(12)

where N is the average number of collisions per unit time, and the bar indicates statistical averaging. If
I’Aa |?depends on the azimuth €, it is necessary to carry out averaging over a revolution along with the
statistical averaging.

We apply these results to vertical betatron oscillations, for which Aa = ~i¢*R A2, where A® is the
scattering angle and ¢ is a Floquet function normalized in accordance with [5]. According to Eq. (12)

R% a2 2
]tlz ist = 8T, (CHEMDE {13)
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Fig.1. Proton interactions with hydrogen: a) ionization cross section gy - 1074
b) "ionization friction cross section" o; = T'/Be<n>; c) total nuclear interaction
cross section gy; d) neutralizafion cross section gyp* 1074,

Fig. 2. Proton losses in hydrogen, Ay;, because of neutralization: a) p = 0; b) p
=10 atoms/cm?% ¢) p = 10%° atoms/cm% d) p =102 atoms/cm?% e) loss because
of nuclear interactions, Ay.

where @Z - N{A®)? is the mean square angle for multiple scattering per unit time [3]:

=4nferinZ (Z + 1) In (183213, (14
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The mean square amplitude of radial betatron oscillations is calculated in a similar manner. For a
collision with a relative energy loss Ae and a scattering angle A®, the derivative x' varies by R;A® and the
orbit is shifted into a position corresponding to the new energy E(1 — A¢), which is equivalent to an addition-
al displacement of the proton by Ax = R0¢AS/B2 and Ax!' = Rozp'As/Bz. Thus the change in amplitude for
radial oscillations can be written in the form

: wony Ao
Aoy =5 Ro [ (4ot — Vo) - — 0300 |, (15)

which leads to the result

laxl 81" <®2Iq>xl +E‘4 I(lez’[" ‘Pz llPx }> (16)
where E% = N{(Ag)? is the mean square fluctuation of the ionization losses per unit time [3]:
- A E2
ef=2nPeriny® (2—P2) Z oo {rn

Analyzing the synchrotron oscillations in the same way, one can show that the momentum spread of
the particles reaches a value

Ap _ 1 g E? ;
(7)st “TsTJemaxlst* PN (18)

These results make sense only when 8 =0.7, when all the decrements can be made positive. At
ilower energies, it is necessary to couple the vertical and radial motions. In the case of strong coupling,
which ensures energy exchange between radial and vertical oscillations in a time less than the effective
damping time, the decrements and average increases in the squares of the amplitudes for both directions
become identical and are, respectively, (I'y + I';)/2 and (|Aax[? + |Aa, [} /2. This leads to the following
values for the stationary mean square amplitudes:
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Particle Loss in Single Events

Nuclear interactions, charge exchange, large-angle Coulomb scattering, and collisions with large
momentum transfer lead to particle loss in single events.

The dependence of the proton-proton nuclear interaction cross section of kinetic energy T is shown
in Fig.lc [6]. The relative magnitude of the loss during the effective damping time I'~! is determined by
the formula Ay = o'n/’o'i, where 0 = I'/Be<n> can be called the ionization loss cross section (see Fig. 1b).
The dependence of Ay on T for hydrogen is shown in Fig,2e. It is clear that Ay =1for T=100MeV, i.e.,
practically all previously stored beam is lost in the period between two injection cycles. Consequently,
storage is possible only for T < 100 MeV and is most effective at energies of a few MeV,

At such low energies, charge exchange transforming protons into neutral atoms can make a signi-
ficant contribution to the losses. The cross section for this process, oy, for hydrogen is shown in Fig, 1d
[7], and the corresponding relationship A;y(T) is shown in Fig, 2a. It is clear that charge exchange essen~
tially limits the storage possibilities on the low-energy side. However, this effect can be reduced by using
reverse ionization of the neutral atoms formed. For this purpose, the decelerating medium must be made
up in the form of a thin target set up in a gap in which there is no magnetic field. Then the majority of
neutral atoms will be secondarily ionized because the corresponding cross section is very large (see Fig.
1a) [8]. TIf the surface density of the target is p (atoms/cm? and the condition {0y + op)p > 1 is satisfied,
the neutralization cross section in a thick target is determined by the expression (¢ygeff = 014/p oy and the
particle loss in a time I'! is Ayg0y0/pojoy; (see Fig. 2b-d).

In Coulomb scattering by nuclei, the main contribution to loss will be made for angles ® £ 1; one can
therefore use the formula for the differential cross section [3]:

do, 21 ( refieZ )2
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Designating the permissible scattering angle by ®, and using Eq. (10}, we find that the Coulomb loss in the
nonrelativistic case is
1 e d ZE

O-C ~ £
he=- | 0~ e (21)
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However, one ought to take into account ohly those events with Ao > M. Actually, when A¢ < Ay, Coulomb
scattering at a large angle would be exprienced by those particles which are lost because of nucleus inter-
actions anyway. On the other hand, when A; > Ay, there is no need to consider nuclear scattering. In
cases of practical interest, @% = (,04-0,1 and therefore Ay = (2-3)* 10~3, This means that for T > 0.5 MeV,
nuclear Coulomb scattering makes no contribution to single-event losses,

Scattering by electrons also can produce no losses because the maximum scattering angle for pro-
tons Omax =~ Ee/E =~ 5-10-¢ is considerably less than the permissible value,

Finally, we discuss the possibility of loss because of collisions with large momentum transfer. In
considering nuclear collisions, if is sufficient to consider those which involve scattering at an angle @ < @,
because losses resulting from collision with ® > ®, are already taken into account. In the nonrelativistic
case, the momentum transferred by a proton to a nucleus has a simple relation to the scattering angle:
(Ap/p) = @%/24) < (®%/2A) = (0.02-0.05)/A, where A is the atomic weight of the target material. Collisions
with electrons lead to a smaller change in momentum: (Ap/p) = (2E./E) = 1073, In cases of practical in~
terest, such a change does not take the proton out of the region of stability.

Nuclear scattering and charge exchange are therefore the main source of single~event loss, The en~
ergy dependence of the total loss A = Ay + A is shown in Fig.3. The inverse quantity, A1, which is rough=
ly the same as the number of injection pulses which can be stored in the system; is ~100 for a hydrogen
target density p ~ 102 atoms/cm? =~ 1.7-10"4 g/cm?.

I1lustrative Calculations

We reduce the formulas obtained to a form suitable for calculation in the nonrelativistic case (T £ 10
MeV). We introduce the notation I'y = ¢I', T'y + Ty = (1 — {)I', where the positive quantity £ <1 has the
form
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(T is measured in MeV). The second part of the formula is valid for an azimuthally symmetric accelera-
tor with coincident betatron frequencies Q; in the general case, it is suitable for a rough estimate. The
stationary mean square amplitude (18) and (19) can then be written as
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It is clear from this equation that the main contribution to the transverse dimensions of the beam
is made by the second term, which takes multiple Coulomb scattering into account, and the first term can
be neglected. When Q®z > 0.05 (1 — ¢), one can also neglect the contribution of orbital spread to beam
width., In this approximation, Eqgs. (23) and (24) indicate that the squares of the semiaxes of the equilib-
rium transverse beam cross section are

142 .
14,00 1,410 412 (1—0.064an;R§|rpx,zl?nax<%(iq)x P+l (25)

~ 2,910 752 (1-0.064 n 2) -

Hydrogen is the best decelerating medium. The dimensions of the beam increaselike vZ + 1 with in~
creasing Z. The dimensions of the storage-ring vacuum chamber are determined by the permissible
magnitude of the loss, which is estimated for each direction over the time period I'"! by means of the
equation [5]:

TI; o~ 2%, e_”l—Ill—’, (26)

where % is the ratio of the square of the permissible amplitude to the square of the stationary amplitude,
For example, demanding that the loss not exceed 10~?, we find that % =6, i.e., the semiaxes of the
chamber must be approximately 2.5 times greater than the beam semiaxes, In addition, the dimension
of the separatrix must be V» times greater than the momentum spread of the beam. To accomplish this,
the amplitude of the accelerating voltage must not be less than

eVﬁl_nq|1—a|T(_A§)z

Per:g;qxu—am(%); a0 0.85-10% £ g[1—a|T. (27)

On the basis of Egs. (23)-(26), one can estimate the permissible angle for single scattering and the

permissible variation in particle momentum: ®; =~ (rQvVr /Ry = 0.2-0.3; (Ap/p)per & 0.06-0,1. These re-
sults were used in the preceding section,
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The average density of the decelerating medium and the size of the decrements are limited by the
capabilities of the accelerating system which compensates for the average ionization energy loss:

o1 () RoZ Ty .
AE=75-10"LL20% (440210 ) 5 (28)
T 1.65-10007, (29)

where AE and T are measured in MeV, R, is in centimeters, nis in atoms/cm?®, and T is in sec™h

As an illustration, we consider a 1.5-MeV storage ring with an average radius of 50 ¢cm and beta~
tron frequencies in the range 3-4, If a hydrogen target is used for deceleration, estimates based on Eg.
(25) give: ry= rye=(1-1.3)/V1 — f cm, Setting ¢ = 0.3, we obtain ry = ry = 1,2-1,5 cm. For permissible
losses because of multiple scattering ~0.01, the chamber radius must be 3-3.5 cm. To avoid particle
escape from the separatrix, it is necessary to have an accelerating voltage of about 30 kV, Assuming a
permissible energy loss per turn of ~9 kV (cos ¢g =~ 0.3) and using Eq. (22), we find that the surface den-
sity of the target is ~10'% atoms/em? ~ 1,7°107% g/em?, Furthermore, the oscillations will be damped

with a decrement I' =~ 3 msec™,

Figure 2 indicates that the losses because of nuclear interactions and charge exchange are respec-
tively 0.028 and 0.003. With the chamber dimensions specified, Coulomb scattering need not be consid-
ered because its effective cross section is 10-15 times less than the nuclear cross section. Colligions in-
volving large momentum transfer make no contribution in this case either because the total losses {includ-
ing multiple losses) are approximately 0,04, i.e., storage of ~25 injection pulses is possible in such a
gystem requiring a period of approximately 10 msec. The maximum number of particles, which is deter-
mined by space charge forces, is approximately 2- 10'2 protons in such a storage ring.
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