

MERcury Intense Target (MERIT) Overview

Van Graves, ORNL

Syringe Procurement Kickoff Meeting Airline Hydraulics Bensalem, PA Oct 28, 2005

> OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Background

- Proof-of-principle experiment to investigate the interaction of a proton beam with a Hg jet inside a highstrength magnetic field
 - If successful, method might be used as production target in new physics facility
- Primary diagnostic for the beam-jet interaction is optical
 - Multiple high-speed cameras will be used to record interaction
- Collaborative effort among multiple national laboratories, universities, and research facilities
- Experiment to be conducted at CERN (Geneva) in April 2007

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Prior Work

E951 Tests (H.Kirk - BNL)

- 1cm dia, 2.5m/s Hg jet
- 24 GeV 4TP beam
- No magnetic field
- Jet dispersal observed

CERN/Grenoble Tests (A.Fabich,J.Lettry -NuFACT'02)

- 4cm dia, 12m/s Hg jet
- 0,10,20T magnetic field
- No proton beam
- Jet stabilization with increasing field

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Experiment Profile

Hg Jet

- 1-cm diameter, 20 m/s, delivered to coincide with magnet peak field
- Required flow rate of 1.57 liter/s (25gpm)

Magnet

- 16-cm diameter bore that Hg system must fit within
- 15 Tesla magnetic field
- Peak field duration ~1 sec
- Magnet cool-down time ~30 minutes
- Environment
 - 24 GeV proton beam, up to 28x10¹² (TP) per 2µs spill
 - 1-atm air environment inside target delivery system primary containment
 - Total integrated dose 10⁴ rads

Geometry

- Hg jet 100 milliradians off magnet axis
- Proton beam 67 milliradians off magnet axis
- Jet intersects beam at magnet Z=0
- Up to 100 beam pulses for the CERN test delivered in a pulse-on-demand mode

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Experiment Geometric Configuration

Experiment is prototypic of a N.F. facility target layout

- Magnet tilt (wrt beam) = 66 mrad (3.8°)
- Hg jet tilt (wrt magnet axis) = 100 mrad (5.7°)
- Hg jet center intersects beam center at Z=0
- Jet in same direction as beam

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Experiment Layout

- Hg target is a self-contained module inserted into the magnet bore
- Two containment barriers between the Hg and the tunnel environment

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Layout

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

LabView-Based Control System

- Remote control over long distance limited choices
 - Analog I/O modules need to be close to equipment and power supplies
- LabView controller on laptop computer was chosen
 - National Instruments recommends CompactPCI I/O modules
 - Communicates to laptop via EtherNet cable
 - Allows custom operator interface, data logging if required during development
 - Should allow straightforward integration with other control systems
- Control system development to begin late October

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Side View

- Tilt limited syringe length
- CERN facility constraints limited syringe width

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg System Schematic

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Syringe System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Syringe System

- Hg flow rate 1.6liter/s (24.9gpm)
- Piston velocity 3.0cm/s (1.2in/sec)
- Hg cylinder force 525kN (118kip)

Primary Containment

- Hg supply flow path
 - 1-inch Sch 40 pipe
 - 1-inch flex metal hose w/sanitary fittings (want smooth wall can hydraulic hose be used?)
 - 1-inch, 0.065-wall rigid tubing
 - 5-inch diameter plenum
 - 12mm-dia, 1mm-wall rigid tubing

- Hg jet return path
 - 1/4-inch plate weldment chamber
 - 6-inch to 2-1/2-inch eccentric reducer
 - 2-1/2-inch flex metal hose w/sanitary fittings
 - Sump tank

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Fathom Flow Simulation

- System diagram for Hg flow
- Results indicate maximum pressure requirement of ~780 psi (50 bar) for baseline plenum/nozzle configuration
- Design system for max pressure of 1000 psig (70 bar)

Fathom Details

Pipe C	Output Tabl	e												Maria
		Pipe			Flow				-	P Stag	dP Stag		P Static	dP Static
		Nominal		Longth	Area	Velocity	Povpolde		D Stag	Out	Total	P Static		Total
Dino	Name	Sizo	(aal/min)	(inches)	(inches 2)	(foot/soc)	No		In (nsig)	(psig)	(neid)	In (neig)	(psig)	(psid)
ripe		linde 10 inch	(yai/1111) 24 0	(110105)	78 854	0 101	6 86E±04	0.0206	78/	(psig) 784	2 77E-05	783 0	(psig) 784	2 77E_0
	2 Cylinder D 1 inch		24.3	15	0.864	0.101	6.56E±05	0.0290	704	704	0.100770	703.9	704	0 100770
	2 Cyline	der D 1 inch	24.3	1.5	0.004	9.24	0.30L+03	0.0230	700	700	0.199779	760	760	0.199776
		anifol 1 inch	24.9	16.1	0.004	9.24	0.50E+05	0.0130	774	764	0.302700	765.0	709	0.302700
			24.9	10.1	0.004	9.24	0.000000	0.2745	714	704	9.112201	765.9	700	9.11220
			24.9	Z. I	0.804	9.24	0.0000000	0.0358	701	760	0.279691	752.0	752	0.27969
	6 Flex I		24.9	10.5	0.945	8.449	0.2/E+05	0.17	760	759	1.110492	753.7	753	1.110492
	7 Hg St	upply 1 inch	24.9	1.80	0.594	13.433	7.91E+05	0.0284	755	755	0.469346	738.7	738	0.469346
	8 Hg Si	upply 1 Inch	24.9	6.7	0.594	13.433	7.91E+05	0.1024	752	750	1.690654	735.3	734	1.690654
	9 Hg Si	upply 1 inch	24.9	44	0.594	13.433	7.91E+05	0.6726	747	736	11.1028	730.8	720	11.1028
	10 Plenu	m 5 inch	24.9	3	20.006	0.399	1.36E+05	0.0105	721	721	0.000153	720.6	721	0.000153
	11 Nozzl	e 1/2 inch	24.9	4	0.108	74.271	1.86E+06	0.1491	469	394	75.21312	-35.3	-110	75.21312
All Jur	nction Tabl	e												
_														
			Elevation				P Stag.	dP Stag.		P Static	dP Static		11-1-1	
		Junction	Inlet	Loss	dH	P Stag.	Out	Total	P Static	Out	Total	T Inlet		
Jct	Name	е Туре	(inches)	Factor (K)	(inches)	In (psig)	(psig)	(psid)	In (psig)	(psig)	(psid)	(deg. F)		
	1 Syringe Pi Assigned		0	0	0	784	784	0	784	783.9	0	68		
	2 Area	Chan Area Chan	0	4,128.12	7.895	784	780	3.8729	784	772.2	11.682	68.2		
	3 Bend	1 Bend	0	0.33841	5.388	780	777	3.011	772	769	3.011	68.2		
	4 Bend	2 Bend	1.15	0.27347	4.354	776	774	2.7736	769	765.9	2.774	68.2		
	5 Bend	3 Bend	18	0.33841	5.388	764	761	3.3789	756	752.8	3.379	68.3		
	6 Pipe f	to Fle Area Chan	19.5	0.00733	0.117	760	760	0.0572	752	753.7	-1.223	68.3		
	7 Flex t	o Tul Area Chan	19.5	0.60087	7.999	759	755	3.924	753	738.7	13.901	68.3		
	8 Tubin	g Ber Bend	19.5	0.17406	5.857	755	752	2.8734	738	735.3	2.873	68.3		
	9 Tubin	9 Tubing Ber Bend 19.5 0.17406 5.85		750	747	2.8734	734	730.8	2.873	68.3				
	10 Plenu	m Inl Area Chan	19.5	0.94145	31.682	736	721	15.5414	720	720.6	-0.952	68.3		
	11 Nozz	e Inle Area Chan	19.5	17,240.17	512.271	721	469	251.2909	721	-35.3	755.894	68.3		
	12 Spray	Spray Disc	19.5	0.78106	802,957	394	0	393,8837	-111	-504.6	393,884	75		

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Other Fathom Simulations

- 1/2" tubing bend
 - Cylinder pressure 1200 psi (83 bar)
- No-bend short 1/2" tube
 Cylinder pressure 710 psi (48 bar)
- 1" tubing bend
 - Cylinder pressure 780 psi (54 bar)
- All 1/2" tubing from end of flex metal hose, no plenum
 - Cylinder pressure 1910 psi (130 bar)
- Any non-plenum design should minimize number of bends & length of nozzle tubing
- Don't let syringe pump limit nozzle configuration – desire to change syringe design pressure to 1500 psi (103 bar) to match Hg cylinder rating

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Primary Containment Cross Section

Secondary Containment

- SS and Lexan enclosure around entire primary system
- Contains Hg vapors/leaks, provides access to monitor Hg vapors
- Provides access to optical diagnostics, hydraulics, and sensors
- Incorporates beam windows

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Containment Access Ports

- Optical diagnostics
- Instrumentation
- Hydraulics
- Hg drain & fill (without opening secondary)
- Hg extraction (in event of major leak in primary containment)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg Delivery System Procurement Plan

- Syringe system procured first because of expected long lead time on cylinders
- Details of primary/secondary containments & baseplate being finalized
 - Expect to begin procurement process in Nov/Dec
- Syringe system to be integrated by containment fabricator

	- Will	PROL
Test Plan	π	21
Magnet testing at MIT	Oct - Dec 4	Control
Hg nozzle tests at Princeton –Iterate nozzle design as needed	Oct - Dec 2005	
Hg target system testing at ORNL -Includes optical diagnostics -Initially test with water to develop syringe control system -Incorporate Princeton nozzle design, iterate if necessary -Practice Hg fill and extraction -Hg jet characterized	April - June 2006	
Integrated test at MIT –Practice CERN installation sequence –Hg jet in magnetic field characterized	Aug - Sept 2006	
Ship system to CERN	Nov 2006	
Experiment scheduled at CERN	April 2007	

