

Update on Studies of Ionization Cooling Lattices

A. Alekou[#], Imperial College London, London, U.K. J. Pasternak, Imperial College London, London/RAL-STFC C. Rogers, RAL ASTeC

#androula.alekou08@ic.ac.uk

Layout

- 3 versions of Bucked Coils, BC
- FSIIA vs BC:
 - Magnetic Field Comparison
 - Cooling Dynamics & Transmission
 - Summary & Future Plans

Bucked Coils, BC

Three different versions of BC were studied, BC-I, BC-II, BC-III. They all have the SAME configuration except for: •the cell's length and •the current densities of their coils Differences of the BC versions

Lattice	BC-I	BC-II	BC-III
Full-cell			
Length (m)	2.10	1.80	1.80
Inner Coil Current	00.24	100 10	00.26
Density (A/IIIII-)	90.24	120.10	99.20
Outer Coil Current			
Density (A/mm ²)	120.00	112.80	132.00

10/4/2011

Magnetic Field Comparison

Magnetic Field Comparison

SCIENTIA

Btot (T)

Black: FSIIA Red: BC-I Green: BC-II Blue: BC-III

FSIIA: >4 T
BC-I: 4 times lower than FSIIA
BC-II and BC-III: 2 times lower than FSIIA

Beam initial characteristics

Lattices were compared using the same initial beam:

- 1,000 muons
- 10 mm Transverse Emittance
- 0.07 ns Longitudinal Emittance
- P: Gaussian distribution centred at 232 MeV/c

Cooling Dynamics & Transmission

Transverse Emittance (4D) Transmission

Transmission in A_T<30 mm ∈⊥(mm) emit4D mm FSIIA BC-I Transmission in A₁<30 mm 650 BC-II BC-III 600 550 40 60 80 100 120 140 z (mm) Emittance 4D 500 Trensmission in A₁<30 mm - FSIIA 450 BC-I Transmission BC-II 400 BC-III Transmission 1000 100 - FSIIA BC-I 80 100 120 140 20 40 60 900 0 BC-II BC-III z (mm) 800 •BC-III: best transmission at 120 m 700 •FSIIA maximum at 70 m 600 •BC-I: less than 4% lower transmission than 60 80 100 120 140 40 FSIIA at 70 m (BC-II and BC-III less than 3%) z (mm) 10/4/2011

8

 $] \times 10^{3}$

Summary

- New lattices based on Bucked Coils (BC-I, BC-II, BC-III) were designed to lower the magnetic field in the RF cavities
- BC-I, has ~<u>4 times less magnetic field than FSIIA</u> at the position of the RF cavities and transmission within 30 mm A_T <u>only</u> ~4% lower than FSIIA

Future Plans

BC optimisation: find an improved lattice with a lower B at the position of the RF cavities while also providing <u>much better</u> transmission than FSIIA

Note: Update on 6D cooling will be given when I have better results...