

1

Pion and Muon Yields

John Back University of Warwick, UK

 1^{st} July 2008

Introduction

- Using MARS (v15.07) and Study-II geometry to find pion & muon yields for solid tungsten target and tungsten powder jet (50% ρ)
- $10 \,\mathrm{GeV}$ parabolic proton beam in $20 \,\mathrm{T}$ field region
- Solid target is a cylindrical rod. Vary:
- Rod length: 15, 20, 25 and $30\,\mathrm{cm}$
- Rod radius: 0.25, 0.50, 0.75, 1.00, 1.50 cm; $r_{\text{beam}} = r_{\text{rod}}$
- Rod tilt (θ): 0, 20, 50, 100, 150, 200, 250, 300 mr; $\theta_{\text{beam}} = \theta_{\text{rod}}$
- Use ICOOL (v3.10) to calculate final muon acceptance
- Comparing solid target with Hg jet: $\theta_{\text{beam}} = 67 \text{ mr}, \ \theta_{\text{Hg}} = 100 \text{ mr},$ $r_{\text{beam}} = 0.15 \text{ cm}, \ r_{\text{Hg}} = 0.50 \text{ cm} \text{ (input files courtesy H. Kirk)}$

Target Geometry: $(\boldsymbol{z}, \boldsymbol{x})$ plane

StudyII

Helmholtz (zoom in); 10 cm shielding on both sides of gap

Colour scheme: Target rod (black), \underline{B} field lines (red), Cu coils (magenta), SC magnets (yellow), shielding (brown), iron plug (purple).

NuFact '08

Current density in Cu coils: $\langle \text{Study II} \rangle = 20 \text{ A mm}^{-2}$, Helmholtz = 30 A mm^{-2}

Probability acceptance map

Charge averaged π, μ accepted yield per proton for $r_{\text{beam}} = 0.25 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Pion absorption - solid target

- Compare π yields from one rod (Y_0) with yields (Y) from 3 rods or a toroid to estimate target re-absorption: lost fraction, $f_{\text{lost}} = (Y_0 - Y)/Y_0$
- Solid tungsten target rod length $L = 30 \,\mathrm{cm} \,(\theta_{\mathrm{rod}} = \theta_1)$
- 3 rod case: L = 30 cm, gap between rods = $10 \text{ cm} (\theta_{\text{rod}} = \theta_3)$
- Horizontal toroid: radius of curvature = 5 m. Effective length $L_z \approx 1 \text{ m}$
- 10 GeV parabolic proton beam, $\theta_{\text{beam}} = 67 \,\text{mr}$

$r_{\rm rod}$	$r_{ m beam}$	3 rods f_{lost}	toroid $f_{\rm lost}$	$3 \text{ rods } f_{\text{lost}}$
		$(\theta_1 = \theta_3 = 0)$	$(\theta_1 = 0)$	$(\theta_1 = \theta_3 = 100 \mathrm{mr})$
$0.5\mathrm{cm}$	$0.5\mathrm{cm}$	39%	23%	7%
$1\mathrm{cm}$	$1\mathrm{cm}$	57%	47%	15%
$1\mathrm{cm}$	$1.5\mathrm{cm}$	53%	53%	11%

Pion absorption - Hg jet

Consider Hg jet vapour inside target aperture up to z = 2 m (Be window)

 $\rho_{\text{vapour}} = \rho_{\text{He}} \times (0.1 \text{bar}/1 \text{atm}) + w \times \rho_{\text{Hg}}$

 $w = V_1/V_2$ V_1 = volume of Hg jet V_2 = volume inside aperture ($z \le 2$ m)

Consider two jet volumes: Whole jet z < 2 m (A) and effective jet-beam overlap length of 30 cm (B)

Jet volume	w	$f_{\rm lost}$
Case A: $z < 2 \mathrm{m}$	0.3%	5%
Case B: $L = 30 \mathrm{cm}$	0.03%	1%

Summary

- Presented π , μ yields for solid and powder (50% ρ) W targets; $E_p = 10 \text{ GeV}$
- Solid W yields comparable (lower) than optimal Hg yield for $r_{\rm rod} < 0.75 \,\rm cm$ $(r_{\rm rod} > 0.75 \,\rm cm)$
- Powdered jet yields comparable to solid target yields
- Reduced π production, but also reduced re-absorption in the target
- Overall optimal W target tilt (= beam tilt) is approximately $100 \,\mathrm{mr}$
- Overall optimal solid target length is $\geq 25 \,\mathrm{cm} \ (\geq 2.6 \text{ interaction lengths})$
- Cross-checking results with Geant 4
 - MARS pion production calculations agree rather well with experimental data
 - Need to check that MARS absorption calculations also agree with data

Extra material

- Pages 15-17 show comparison of Monte Carlo simulation models with HARP data
- Plots courtesy of G. Skoro (University of Sheffield, UK)
- Pages 18-22 show comparison of the solid target yields between the standard Study-II geometry and the Helmholtz gap geometry (shown earlier)

HARP data for 12 GeV/c π^{\pm} beam producing secondary π^{\pm} in Ta target (5% λ_I)

HARP data for 8 GeV/c π^{\pm} beam producing secondary p in Ta target (5% λ_I)

HARP data for $12 \,\text{GeV/c}$ p beam producing secondary p in Ta target $(5\%\lambda_I)$

John Back

1 July 2008

