

Empirical Radiation Damage Calculations

John BackUniversity of Warwick

22nd February ²⁰¹¹

Introduction

- FLUKA production release does not (yet) have DPA, or displacement per atom, calculations available
- •Using empirical formulae to estimate DPA, ^a measure of radiation damage
- •• Find average number of defects N_F (Frenkel pairs) caused per proton, divide by the total number of atoms (density), then multiply by the total proton rate over ¹ year to get DPA/year.
- ^A defect forms when an atom is ^given energy and leaves its ^place in the lattice, displacing nearby atoms.
- Use the deposited energy in FLUKA as the kinetic energy of the primaryknock-on atom (PKA)
- Use the previous IDS120f energy deposition results for ⁸ GeV proton beam

Empirical DPA Estimate

The number of defects (per proton) is estimated as

$$
N_F = \kappa \frac{\xi(T)T}{2E_{th}} \tag{1}
$$

 $\kappa = 0.8$ is the displacement efficiency

T is the kinetic energy of the primary knock-on atom: assume this is the denominator $\prod_{i=1}^{n}$ deposited energy in FLUKA

 $\xi(T)$ is the partition function: how the initial energy displaces other atoms E_{th} is the damage threshold energy (min energy to displace an atom): ¹⁰ eV (Be), ³⁰ eV (graphite), ⁴⁰ eV (Cu), ⁴⁰ eV (Nb), ⁹⁰ eV (tungsten)

$$
DPA/\text{year} = \langle N_F \rangle \frac{N_p}{\rho V} \tag{2}
$$

 $\langle N_F >$ is the average value of N_F per proton V is the total volume of the ^given material region $\rho =$ Number atoms per unit volume N_p = Number of protons on target per year = $3.125 \times 10^{15} \text{ s}^{-1} \times 2 \times 10^7 \text{ s}$ $= 6.25 \times 10^{22} / \text{year}$

Partition function $\xi(T)$ (Damage Efficiency)

Lindhard, Scharff and Schiott (LSS) theory

$$
\xi(T) = \frac{1}{1 + k_L g(\epsilon)}\tag{3}
$$

$$
k_L = \frac{32}{3\pi} \left(\frac{m_e}{M_2}\right)^{1/2} \frac{(1+A)^{3/2} Z_1^{2/3} Z_2^{1/2}}{(Z_1^{2/3} + Z_2^{2/3})^{3/4}}\tag{4}
$$

$$
g(\epsilon) = \epsilon + 0.40244\epsilon^{3/4} + 3.4008\epsilon^{1/6}, \epsilon = T/E_L
$$
 (5)

$$
E_L = \frac{Z_1 Z_2 e^2}{a_{12}} \frac{1+A}{A} \tag{6}
$$

$$
a_{12} = \left(\frac{9\pi^2}{128}\right)^{1/3} \frac{a_H}{(Z_1^{2/3} + Z_2^{2/3})^{1/2}}
$$
(7)

 Z_i atomic number, M_i mass for $i = 1$ projectile (PKA) and $i = 2$ target atom $A = M_2/M_1$, $a_H = 52.92$ pm (Bohr radius), m_e = electron mass, $e^2 = 1.4398 \,\text{eV} \,\text{nm}$.

Partition function $\xi(T)$ for several materials

Estimated DPA in SC Coils

Consider the primary knock-on atom as Nb, colliding with other Nb atoms: $Z_1 = Z_2 = 41, A = M_2/M_1 = 1$

SC3 has largest energy deposition (0.3 kW), but has more volume

C.L. Snead et al, J. Nuclear Mat ¹⁰³ (1981) 749: High energy neutron damage in Nb₃Sn suggest critical dose for operation of conductors is 1.9×10^{-3} DPA.

Previous Study 2 geometry has for SC1 (\sim 50 kW deposition from earlier FLUZA attach). DPA – 2×10^{-3} (resp. FLUKA study): $DPA = 2 \times 10^{-3} / year$

Estimated DPA in other regions

Summary

- Used empirical formulae to estimate DPA/yr using FLUKA energydeposition results (not pea^k DPA, only average)
- Suggests DPA for SC coils in IDS120f geometry is below critical dose of 1.9×10^{-3} DPA.
- Probably need to wait for proper FLUKA implementation to get more detailed (localised) estimates of DPA
- Would then be able to break down individual contributions from n/γ and ^plot DPA "density" histograms to see local "hot spots"
- Would be nice to know what MARS ^gives for DPA results
- Can then check against these "order of magnitude" estimates