

Empirical Radiation Damage Calculations

John Back University of Warwick

22nd February 2011

Introduction

- FLUKA production release does not (yet) have DPA, or displacement per atom, calculations available
- Using empirical formulae to estimate DPA, a measure of radiation damage
- Find average number of defects N_F (Frenkel pairs) caused per proton, divide by the total number of atoms (density), then multiply by the total proton rate over 1 year to get DPA/year.
- A defect forms when an atom is given energy and leaves its place in the lattice, displacing nearby atoms.
- Use the deposited energy in FLUKA as the kinetic energy of the primary knock-on atom (PKA)
- Use the previous IDS120f energy deposition results for 8 GeV proton beam

Empirical DPA Estimate

The number of defects (per proton) is estimated as

$$N_F = \kappa \frac{\xi(T)T}{2E_{th}} \tag{1}$$

 $\kappa=0.8$ is the displacement efficiency

T is the kinetic energy of the primary knock-on atom: assume this is the deposited energy in FLUKA

 $\xi(T)$ is the partition function: how the initial energy displaces other atoms E_{th} is the damage threshold energy (min energy to displace an atom): 10 eV (Be), 30 eV (graphite), 40 eV (Cu), 40 eV (Nb), 90 eV (tungsten)

$$DPA/\text{year} = \langle N_F \rangle \frac{N_p}{\rho V}$$
 (2)

 $\langle N_F \rangle$ is the average value of N_F per proton

- V is the total volume of the given material region
- ρ = Number atoms per unit volume
- N_p = Number of protons on target per year = $3.125 \times 10^{15} \,\mathrm{s}^{-1} \times 2 \times 10^7 \,\mathrm{s}$ = $6.25 \times 10^{22}/\mathrm{year}$

Partition function $\boldsymbol{\xi}(\boldsymbol{T})$ (Damage Efficiency)

Lindhard, Scharff and Schiott (LSS) theory

$$\xi(T) = \frac{1}{1 + k_L g(\epsilon)} \tag{3}$$

$$k_L = \frac{32}{3\pi} \left(\frac{m_e}{M_2}\right)^{1/2} \frac{(1+A)^{3/2} Z_1^{2/3} Z_2^{1/2}}{(Z_1^{2/3} + Z_2^{2/3})^{3/4}}$$
(4)

$$g(\epsilon) = \epsilon + 0.40244\epsilon^{3/4} + 3.4008\epsilon^{1/6}, \epsilon = T/E_L$$
(5)

$$E_L = \frac{Z_1 Z_2 e^2}{a_{12}} \frac{1+A}{A}$$
(6)

$$a_{12} = \left(\frac{9\pi^2}{128}\right)^{1/3} \frac{a_H}{(Z_1^{2/3} + Z_2^{2/3})^{1/2}}$$
(7)

 Z_i atomic number, M_i mass for i = 1 projectile (PKA) and i = 2 target atom $A = M_2/M_1$, $a_H = 52.92$ pm (Bohr radius), m_e = electron mass, $e^2 = 1.4398$ eV nm.

Partition function $\boldsymbol{\xi}(\boldsymbol{T})$ for several materials

Estimated DPA in SC Coils

Consider the primary knock-on atom as Nb, colliding with other Nb atoms: $Z_1 = Z_2 = 41, A = M_2/M_1 = 1$

Region	DPA/yr
SC Coil 1	5×10^{-6}
SC Coil 2	5×10^{-6}
SC Coil 3	2×10^{-5}
SC Coil 4	3×10^{-4}
SC Coil 5	1×10^{-4}
SC Coil 6	1×10^{-4}
SC Coil 7	1×10^{-4}
SC Coil 8	2×10^{-4}
SC Coil 9	2×10^{-4}

Region	DPA/yr
SC Coil 10	3×10^{-4}
SC Coil 11	2×10^{-4}
SC Coil 12	3×10^{-4}
SC Coil 13	2×10^{-4}
SC Coil 14	2×10^{-4}
SC Coil 15	2×10^{-4}
SC Coil 16	1×10^{-4}
SC Coil 17	1×10^{-4}
SC Coil 18	1×10^{-4}
SC Coil 19	1×10^{-4}

SC3 has largest energy deposition (0.3 kW), but has more volume

C.L. Snead et al, J. Nuclear Mat 103 (1981) 749: High energy neutron damage in Nb₃Sn suggest critical dose for operation of conductors is 1.9×10^{-3} DPA.

Previous Study 2 geometry has for SC1 (~ 50 kW deposition from earlier FLUKA study): DPA = 2×10^{-3} /year

Estimated DPA in other regions

Region	DPA/yr
Cu magnet 1	4×10^{-3}
Cu magnet 2	2×10^{-2}
Cu magnet 3	2×10^{-2}
Cu magnet 4	3×10^{-2}
Cu magnet 5	3×10^{-2}
Shielding (tungsten)	~ 1
Hgjet	~ 220
Hg pool	$ 4 \times 10^{-2} $
Steel casing $(z < 0)$	~ 5
Steel casing $(z > 0)$	~ 0.1
Be window	0.9

Summary

- Used empirical formulae to estimate DPA/yr using FLUKA energy deposition results (not peak DPA, only average)
- Suggests DPA for SC coils in IDS120f geometry is below critical dose of 1.9×10^{-3} DPA.
- Probably need to wait for proper FLUKA implementation to get more detailed (localised) estimates of DPA
- Would then be able to break down individual contributions from n/γ and plot DPA "density" histograms to see local "hot spots"
- Would be nice to know what MARS gives for DPA results
- Can then check against these "order of magnitude" estimates