MARS Target Yield Studies

John Back University of Warwick

1st May 2008

Introduction

- Using MARS (v15.07) and Study-II geometry to find pion & muon yields
- $10 \,\mathrm{GeV}$ parabolic proton beam hitting cylindrical tungsten rod in $20 \,\mathrm{T}$ field
- Rod lengths: 15, 20, 25 and $30\,\mathrm{cm}$
- Rod radii: 0.25, 0.50, 0.75, 1.0, 1.5 cm; $r_{\text{beam}} = r_{\text{rod}}$
- Rod tilt (θ): 0, 20, 50, 100, 150, 200, 250, 300 mr; $\theta_{\text{beam}} = \theta_{\text{rod}}$
- Counting number of π and μ (per proton) along different z planes within target aperture ($z \le 6 \,\mathrm{m}$) directly from MARS output
- Applying simple kinetic energy cuts to estimate particle acceptance in cooling channel: K.E. < 0.35 GeV (used for Hg yields in ISS analysis)
- Hg jet yield per proton is $17.3 \pm 0.1\%$ ($\theta_{\text{beam}} = 67 \text{ mr}, \theta_{\text{Hg}} = 100 \text{ mr}$). Hg jet: cylinder with L=30 cm, r=0.5 cm. Parabolic beam: r=0.15 cm.

John Back

Oxford target meeting

Target Geometry: $(\boldsymbol{z}, \boldsymbol{x})$ plane

StudyII

Helmholtz (close up)

Colour scheme: Target rod (black), <u>B</u> field lines (red), Cu coils (magenta), SC magnets (yellow), shielding (brown), iron plug (purple).

Oxford target meeting

Current density in Cu coils: $\langle \text{Study II} \rangle = 20 \text{ A} \text{ mm}^{-2}$, Helmholtz = $30 \text{ A} \text{ mm}^{-2}$

Solid target yields

- Following plots show the yield for solid W cylindrical rods as a function of
 - rod length
 - rod radius = proton beam radius
- rod tilt = beam tilt (w.r.t z axis)
- Comparing original Study 2 geometry and magnetic field with the Helmholtz arrangement
- gap between the magnets so the solid target can pass through (via a chain system)
- Also comparing the yields from the solid target with the yield from the optimal Hg jet case.

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.25 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.50 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.75 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at $z = 6 \text{ m for } r_{\text{beam}} = 1 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 1.5 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Powder jet target yields

- Following plots show the yield for a W powder particle jet:
- Jet simulated as a simple cylinder, with $\rho = 0.5 \rho_W$
- Jet parameters: useable length, radius and tilt
- Assuming $r_{\text{beam}} = r_{\text{jet}}, \, \theta_{\text{beam}} = \theta_{\text{jet}}, \, \text{unlike Hg jet case}$
- Use Study 2 geometry for the powdered jet (not Helmholtz arrangement)
- Comparing yields against those from the solid W target Helmholtz arrangement
- Also comparing the yields from the powdered jet with the yield from the optimal Hg jet case.

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.25 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.50 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 0.75 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at $z = 6 \text{ m for } r_{\text{beam}} = 1 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Charge averaged π, μ yield per proton at z = 6 m for $r_{\text{beam}} = 1.5 \text{ cm}$

Dotted line is Hg jet yield for 10 GeV beam (using StudyII optimal tilt, radii)

Hg jet re-absorption

 π, μ re-absorption due to Hg vapour (up to Be window at z=2 m). Hg jet: simple cylinder, Study 2 parameters. $\rho_{\text{vapour}} = \rho_{\text{He}} \times (0.1 \text{bar}/1 \text{atm}) + w \times \rho_{\text{Hg}}; \quad w = 0, 1\%, 10\%.$

Summary

- Presented π , μ yields for solid and powder W targets; $E_p = 10 \,\text{GeV}$
- Helmholtz geometry yields are > 90% of original geometry yields
- Solid W yields higher (lower) than optimal Hg yield for $r_{\rm target} < 0.75 \,\rm cm$ $(r_{\rm target} > 0.75 \,\rm cm)$
- Powdered jet yields comparable to Helmholtz solid target yields
- Overall optimal W target tilt (= beam tilt) is approximately $100 \,\mathrm{mr}$.
- Overall optimal solid target length is $\geq 25 \,\mathrm{cm} \,(\geq 2.6 \,\mathrm{interaction \, lengths})$.
- Hg vapour re-absorption significant effect: yield $\approx Y_0 e^{-(\Delta z/L_{int})}$
- effective interaction length $L_{\rm int} \approx 10 {\rm cm}/w$, where $w = {\rm density fraction}$
- $-Y_0$ is the yield for the no vapour case.