Studies of Nuon-Induced Radioactivity at NuM

David Boehnlein

Fermi National Accelerator Laboratory (on behalf of the JASMIN Collaboration) NuFact09 – July 24, 2009

The JASMIN Collaboration

- D. J. Boehnlein, A. F. Leveling, N. V. Mokhov*, K. Vaziri
 - Fermi National Accelerator Laboratory
- Y. Iwamoto, Y. Kasugai, N. Matsuda, H. Nakashima*, Y. Sakamoto*
 - Japan Atomic Energy Agency
- M. Hagiwara, Hiroshi Iwase, N. Kinoshita, H. Matsumura, T. Sanami, A. Toyoda
 - High Energy Accelerator Research Organization (KEK)
- H. Yashima
 - Kyoto University Research Reactor Institute
- H. Arakawa, N. Shigyo
 - Kyushu University
- H. S. Lee
 - Pohang Accelerator Laboratory
 - K. Oishi
 - Shimizu Corporation
- T. Nakamura
 - Tohoku University
- Noriaki Nakao
 - Aurora, Illinois
- * Co-Spokesperson

July 24, 2009

NuFact09 - David Boehnlein

I still the still be a structure of the structure of the

The JASMIN Experiment

- JASMIN Japanese & American Study of Muon Interactions and Neutron Detection (Fermilab T972)
- A study of shielding and radiation physics effects at high-energy accelerators
- Studies to date have focused on the antiproton production target (AP0) and NuMI.
- We present here status of work in progress to study activation at the NuMI muon alcoves.

Experimental Goals of JASMIN

- Benchmarking of Monte Carlo codes
- Radiation safety
- Study of muon interactions
 - Material activation
 - Shielding
 - Muon detection & measurement
- Improved characterization of NuMI muon monitors.

Motivation

- Why is a neutrino experimenter talking to a group of accelerator physicists about radiation physics?
- This workshop is considering machines that could produce unprecedented muon intensities.
- If such machines are to be built, one must consider the radiological issues, including the potential for radioactivation due to muons.
- Monte Carlo codes used for simulations should accurately account for it. July 24, 2009
 NuFact09 - David Boehnlein

5

Source of electron, photon and neutron

July 24, 2009

Neutrinos at the Main Injector

- The NuMI beamline focuses a ν_μ beam toward Soudan, Minnesota.
- Since the neutrinos come from 2-body pion decay, the world's most intense neutrino beam is also the world's most intense muon beam.
- Arrays of ionization chambers in downstream alcoves monitor muons co-produced with the neutrinos.

NuMI Muon Monitoring Alcoves

- Schematic layout of the muon alcoves at NuMI
- Note that Alcove 1 is in the Absorber Hall.
 - See L. Loiacono's talk at this workshop for a discussion of the muon monitors.

Estimated Muon Fields

Alcove	Charged Particle Fluence	Beam Size
1	6.5 x 10 ⁵ cm ⁻² 10 ⁻¹² ppp	190 cm
2	0.9 x 10 ⁵ cm ⁻² 10 ⁻¹² ppp	250 cm
3	0.35 x 10 ⁵ cm ⁻² 10 ⁻ ¹² ppp	190 cm

- Predicted data from Kopp et al. [NIM A 568 (2006)503]
- Assumes Low-Energy Beam.
- Beam size is FWHM.
- Neutrons < 1% in downstream alcoves.

Procedure I

- **Copper and Aluminum disks were** placed in alcoves 1 -4.
- Disks are 8 cm diameter x 1 cm thick.
- **Beam exposure was** • 22.8 hours.
- NuMI beam put 6.26 x 10¹⁷ p.o.t.
- **Additional samples** were placed to measure neutron activation.

ples are on the wall behind mu-monitor

Alcove-4

Alcove-3

samples are on the shield surface in beam cente

Absorber

Procedure II

- JASMIN operates parasitically with NuMI.
- Samples are placed and retrieved during natural beam-down periods.
- Isotopic signatures are measured on High-Purity Ge counters at High-Intensity Lab.
- Operations so far have occured in November 2007 and November 2008.

Radionuclides observed in Samples

This table summarizes the radionclides observed in the exposed copper samples.

 ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co have substantial half-lives (beyond a reasonable cooldown period for accelerator maintenance).

Tal	ble	1	Rel	leva	nt r	ucl	lear	dat	а
-----	-----	---	-----	------	------	-----	------	-----	---

Nuclide	Half-life	Type	Eγ (keV)	Intensity(%)
Na-24	14.959 h	C-	2754.03	99.944
K-42	12.36 h	Ι	1524.70	18.08
K-43	22.3 h	C-	617.49	79.2
Sc-43	3.891 h	C+	372.76	22.5
Sc-44m	2.44 d	Ι	271.10	86.7
Sc-46	83.79 d	Ι	889.28	99.984
Sc-47	3.345 d	C+	159.40	67.9
Sc-48	43.67 h	Ι	1037.50	97.6
V-48	15.9735 d	C+	944.13	7.76
Cr-51	27.702 d	C+	320.08	9.86
Mn-52	5.591 d	C+	744.20	90.6
Mn-54	312.12 d	Ι	834.85	99.976
Fe-59	44.503 d	C-	1099.25	56.5
Co-55	17.53 h	C+	931.10	75
Co-56	77.27 d	C+	846.77	99.935
Co-57	271.79 d	C+	122.06	85.60
Co-58	70.82 d	Ι	810.78	99.448
Co-60	5.2714 y	Ι	1332.50	99.9820
Ni-57	35.6 h	C+	1377.63	81.7
Cu-64	12.700 h	Ι	1345.77	0.473

I: Independent yields, C–: Cumulative yields for β^- decay, and C+: Cumulative yields for β^+ decay and/or electron capture

Preliminary Results

- Attenuation of muons, as shown by yield ratios normalized to Alcove 2.
- Yield ratios vs. distance (top)
- Yield ratios vs. nucleons emitted from target nucleus (bottom)
- Note Aluminum results are included (²⁴Na).

July 24, 2009 Figures courtesy of H. NuFacto9 - David Boehnlein

Preliminary Results II

- Activation Products on copper samples by mass number.
- Alcove 1 shows evidence of neutron activation.
- The narrow line is a fit to an empirical formula for photospallation (Rudstam et al. Phys Rev 126, 5 (1962) 1852).

Summary

- JASMIN has measured radionuclides produced in Aluminum and copper in the muon alcoves
- It's not clear how much of the activity is produced by muons and how much by muon-produced neutrons (for radiation safety, does it matter?)

15

 MARS15 simulations give good predictions of dose rates and activation.

July 24, 2009 Studies will continue in Fall 2009.

Backup Slides . . .

ACNET Readout for Exposure

July 24, 2009

FIG. Calculated muon spectra in units of number of muons per GeV, per cm², and per primary proton in Alcove-1, Alcove-2, Alcove-3, and Alcove-4.

July 24, 2009

Samples for Neutron Studies

July 24, 2009

Activation Yields vs Charge

Theoretical calculation

Target (Graphite) 120 GeV -256kW typical

Decay pipe (670m long - 2m diam.)

MARS code Simulate interaction and transport of 120 GeV proton and secondary particles

Fermilab rock Ca : O : C : Mg : H = 0.09 : 0.56 : 0.17 : 0.08 : 0.10 p=2.85 g/cm³

Absorber hall and muon alcoves

Radiations around intense muon beam (T.Sanami)

July 24, 2009