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1. Recap of current UKNF solid target
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Traditional UKNF Solid Target

p* > target 2 n*,n~ =2 u*,u” =2 neutrinos
Radiation-cooled solid rods of tungsten

— Replaced every 50Hz beam pulse by chain or
wheel (~200 in whole loop)

2-3cm diameter, 20-30cm length
Inside initial 20T solenoidal capture field

— Usable bore ~20cm diameter
— Pions tend to spiral in magnetic field
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Pion Motion
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Main Design Problems

Direct heating of the target from energy
deposition
Pions becoming reabsorbed

— Target being too wide
— Re-entering the target due to magnetic field

Reabsorption produces more heating!

A total of 20-30cm of high-Z target
material thickness seems optimal
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Where does the proton beam power go?

12.9%

B Heat deposited in target

O Kinetic energy of protons within
5° of forward axis

E Kinetic energy of other (diffuse)
secondaries, including pions

24.3%

Figures from a 10GeV proton beam (ISS baseline) hitting a 20cm long,
2cm diameter tantalum rod target
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Energy Deposition in Rod (heat)
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» Scaled for SMW total beam power
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Not Multi-Megawatt Heating

Machine Beam power Proton energy |Heating power
ISS beam |4MW 10GeV 514kW  (x3)
UK 4MW 8GeV 512kW
neutrino

SCENANOs = Topmw 8GeV 640kW
ISIS&: 169kW 800MeV  |169kW (<)
neutron source 211uA
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2. Pros and cons related to water cooling
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Why it "wouldn’t work™

» Additional water would reabsorb too many
pions
— It would also increase heating in itself

* Increasing the target length would
increase longitudinal time-spread of pions

— 1m length = 3ns > 1ns RMS of proton beam

» Water-cooling has a maximum of 1MW
— Would require 50% water in the small target
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False Assumptions Corrected

» Additional water would reabsorb too many
pions
— pwater = 1.0 g/cc, Ptungsten — 19.2 g/cc

* Increasing the target length would
increase longitudinal time-spread of pions
— Pions of interest >250 MeV/c momentum
— B> 0.87, Bprotons = 0-996, only lag matters

* 1MW is enough capacity
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Advantages of Water Cooling

» Conventional technology

— Many examples in operation

* Including elsewhere in the target assembly! E.g.
cooling for the normal-conducting solenoids

— No solid moving parts (apart from pumps)
— Radioactive flow loop isn’t liquid mercury
 Although there is still some tritium to deal with

 All parts of target stay below about 200°C
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Disadvantages of Water Cooling

» Water will cavitate if the instantaneous
temperature rise is too high, erode walls

— Also if the flow rate is too high for pressure

* Flow manifold has to be somewhere and
enter/exit the target

* Pressures may have to be large to induce
sufficient flow rate

» Relies on fluid dynamics, requires much
more careful design than in this talk
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Nalve Flow Rate Calculation

Assumes perfect:

— Conductivity of metal target pieces

— Thermal conduction from target to water
— Mixing of water

P.. = 700kW; AT = 50K
Flow rate 3.34 kg/s

Speed 10.6 m/s for 2cm diameter pipe
— Will be more than this realistically
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3. Results from MARS 15.07
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Simulation Geometry

4x4 =16 runs Particles logged at end-plane
B, =20T 10cm I

2 3.4 5em ‘ radius I

Parallel beam,
circular parabolic 20cm. 50cm. 1m. 2m

distribution, 2cm
Tantalum “coin”, 2mm thick =2
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20cm total Ta thickness




Three Figures of Merit

« Useful pion yield
— Weighted depending on (p;,pt) momenta

 Amount of heating in the system
— How much does the water contribute?

* Time-spread acquired from long target
— Only interested in “useful” pions here too
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Useful Pion Yield
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Amount of Heating
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Arrival Time Distribution
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Modified Geometry

4x4 =16 runs
3mm thickness additional I
water outside main target |
Protons I
: £ 1
2mm thickness = >
stainless steel ' 20cm, 50cm, 1m, 2m "

Tantalum “coin”, 2mm thick =2
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Modified Pion Yield

0.01

0.009 -

0.008 -

0.007 A

0.006 -

0.005

0.004 -

0.003

0.002 -

0.001 A

100%

3x50cm: 94.4% > 91.9% of 2x20 (solid)
3x100: 90.8% > 82.7%

N\

+ 90%

+ 80%

+ 70%

+ 60%

+ 50%

1 40%

+ 30%

+ 20%

1 10%

0%

L20cm R 1cm

L20cm R 1.5cm

L20cm R 2cm

L20cm R 2.5cm

L 50cm R 1cm

L 50cm R 2.5cm

L 50cm R 1.5cm
L50cm R 2cm

L 100cm R 1cm
L 100cm R 1.5cm
L 100cm R 2cm

L 100cm R 2.5cm
L 200cm R 1cm

L 200cm R 1.5cm

L 200cm R 2cm

L 200cm R 2.5cm

—o— pit/(p.GeV)
pi-/(p.GeV)
—e— pi+ with tube
—m— pi- with tube
—a— Ratio(pi+)
—a— Ratio(pi-)

Stephen Brooks / s.j.brooks@rl.ac.uk
UKNF meeting, Warwick, April 2008




Amount of Heating
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RMS of Useful Arrival Times
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Conclusions

* The neutrino factory requirements do not
seem to preclude a water-cooled target

— Fast particle production targets can have a
much lower % heat load than slow targets

* Does this also mean an SNS-style
enclosed mercury target might work"?

* Need to investigate in more depth to either
verify or exclude these options
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