Pion Production from Water-Cooled Targets

Contents

- 1. Recap of current UKNF solid target
- 2. Pros and cons related to water cooling
- 3. Results from MARS 15.07
 - Including water in & lengthening the target
 - Pion yield (reabsorption)
 - Additional heating
 - Pion temporal distribution
- Conclusions

1. Recap of current UKNF solid target

Traditional UKNF Solid Target

- p⁺ \rightarrow target $\rightarrow \pi^+, \pi^- \rightarrow \mu^+, \mu^- \rightarrow$ neutrinos
- Radiation-cooled solid rods of tungsten
 - Replaced every 50Hz beam pulse by chain or wheel (~200 in whole loop)
- 2-3cm diameter, 20-30cm length
- Inside initial 20T solenoidal capture field
 - Usable bore ~20cm diameter
 - Pions tend to spiral in magnetic field

Pion Motion

Main Design Problems

- Direct heating of the target from energy deposition
- Pions becoming reabsorbed
 - Target being too wide
 - Re-entering the target due to magnetic field
- Reabsorption produces more heating!
- A total of 20-30cm of high-Z target material thickness seems optimal

Where does the proton beam power go?

Figures from a **10GeV** proton beam (ISS baseline) hitting a 20cm long, 2cm diameter tantalum rod target

Muon Transmission from MARS15-Generated Pions

Energy Deposition in Rod (heat)

Scaled for 5MW total beam power

Not Multi-Megawatt Heating

Machine	Beam power	Proton energy	Heating power
ISS beam	4MW	10GeV	514kW ×3
UK neutrino factory scenarios	4MW	8GeV	512kW
	5MW	10GeV	643kW ×4
	5MW	8GeV	640kW
ISIS	169kW	800MeV	169kW ×1
neutron source		211μΑ	

2. Pros and cons related to water cooling

Why it "wouldn't work"

- Additional water would reabsorb too many pions
 - It would also increase heating in itself
- Increasing the target length would increase longitudinal time-spread of pions
 - 1m length = 3ns > 1ns RMS of proton beam
- Water-cooling has a maximum of 1MW
 - Would require 50% water in the small target

False Assumptions Corrected

 Additional water would reabsorb too many pions

```
-\rho_{\text{Water}} = 1.0 \text{ g/cc}, \rho_{\text{tungsten}} = 19.2 \text{ g/cc}
```

- Increasing the target length would increase longitudinal time-spread of pions
 - Pions of interest >250 MeV/c momentum
 - $-\beta > 0.87$, $\beta_{protons} = 0.996$, only lag matters
- 1MW is enough capacity

Advantages of Water Cooling

- Conventional technology
 - Many examples in operation
 - Including elsewhere in the target assembly! E.g. cooling for the normal-conducting solenoids
 - No solid moving parts (apart from pumps)
 - Radioactive flow loop isn't liquid mercury
 - Although there is still some tritium to deal with
- All parts of target stay below about 200°C

Disadvantages of Water Cooling

- Water will cavitate if the instantaneous temperature rise is too high, erode walls
 - Also if the flow rate is too high for pressure
- Flow manifold has to be somewhere and enter/exit the target
- Pressures may have to be large to induce sufficient flow rate
- Relies on fluid dynamics, requires much more careful design than in this talk

Naïve Flow Rate Calculation

- Assumes perfect:
 - Conductivity of metal target pieces
 - Thermal conduction from target to water
 - Mixing of water
- $P_{in} = 700kW; \Delta T = 50K$
- Flow rate 3.34 kg/s
- Speed 10.6 m/s for 2cm diameter pipe
 - Will be more than this realistically

3. Results from MARS 15.07

Simulation Geometry

Three Figures of Merit

- Useful pion yield
 - Weighted depending on (p_L,p_T) momenta
- Amount of heating in the system
 - How much does the water contribute?

- Time-spread acquired from long target
 - Only interested in "useful" pions here too

Useful Pion Yield

Amount of Heating

Arrival Time Distribution

RMS of Useful Arrival Times

Modified Geometry

 $4 \times 4 = 16 \text{ runs}$

Tantalum "coin", 2mm thick →

100 coins in target for 20cm total Ta thickness

Modified Pion Yield

Amount of Heating

RMS of Useful Arrival Times

Conclusions

- The neutrino factory requirements do not seem to preclude a water-cooled target
 - Fast particle production targets can have a much lower % heat load than slow targets
- Does this also mean an SNS-style enclosed mercury target might work?
- Need to investigate in more depth to either verify or exclude these options