

The COMET Experiment

10th August 2015 NuFact15 Rio De Janiero Ben Krikler on behalf of the COMET collaboration

Imperial College London

Overview

- Muon-to-Electron Conversion
- Experiment Design
 - Phase-I and Phase-II
- Status and R&D
 - Beamline
 - Detectors
 - Simulation

Muon to Electron Conversion

Charged Lepton Flavour Violation:

$$\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$$

Nucleus is unchanged, process is coherent:

$$E_e = m_{\mu} - B_{\mu} - E_{\text{recoil}}$$

On Aluminium, used by COMET:

$$E_e = 104.9 \; {\rm MeV}$$

Typically define the conversion rate as:

$$\mathcal{R} = \frac{\Gamma(\mu \text{-}e \text{ conversion})}{\Gamma(\mu \text{ capture})}$$

Current limit from SINDRUM-II (90% C.L) on Gold:

$$\mathcal{R} < 7 \times 10^{-13}$$

COMET Single-Event-Sensitivity:

Phase-I =
$$3 \times 10^{-15}$$

Phase-II =
$$3 \times 10^{-17}$$

Muon to Electron Conversion

Charged Lepton Flavour Violation:

$$\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$$

Nucleus is unchanged, process is coherent:

$$E_e = m_{\mu} - B_{\mu} - E_{\text{recoil}}$$

On Aluminium, used by COMET:

$$E_e = 104.9 \text{ MeV}$$

µ→e gamma vs µ-e conversion

- Relative sensitivity in μ-e conversion and μ-e gamma is model dependent
- Highly complementary searches

$$\mathcal{L} = \frac{1}{\kappa + 1} \frac{m_{\mu}}{\Lambda^{2}} (\bar{\mu}_{R} \sigma^{\mu\nu} e_{L} F_{\mu\nu}) + \frac{\kappa}{\kappa + 1} \frac{1}{\Lambda^{2}} (\bar{\mu}_{L} \gamma^{\mu} e_{L}) (\bar{q}_{L} \gamma_{\mu} q_{L})$$

µ→e gamma vs µ-e conversion

- Relative sensitivity in μ -e conversion and μ -e gamma is model dependent
- Highly complementary searches

COMET

COMET

 $S.E.S < 10^{-17} \implies N_{\mu \text{ stops}} > 10^{+17}$

Need to stop many muons

- Intense muon beam
- High stopping efficiency ⇒ Low energy

Assuming no background and perfect acceptance. To reduce these:

- Thin stopping target
- High beam purity

Stopping
Target Signal Electrons

COMET

Actively Cooled Tungsten
Target in 5 T Superconducting
Solenoidal Field

3m

8 GeV proton beam at 56 KW

Protons

Pion Capture
Section

Production
Target

Pion Decay and
Muon Transport Section

Muons

Bent solenoid field + compensating dipole fields

Stopping
Target
Signal Electrons

High beam purity

- Maximize decay channel length
- Bent solenoid + dipole field for charge selection

Low muon energy w. high intensity

- Capture of backwards pions
- Bent solenoid + dipole field for momentum selection

Muon Beam: Bent Solenoid Drifts

- Uniform B field
- Linear field lines

Circular motion about field lines

- Radial gradient in magnetic field
- Cylindrical field lines

$$D \propto \frac{1}{qB} \left(\frac{p_l^2 + \frac{1}{2}p_t^2}{p_l} \right)$$
$$\propto \frac{1}{qB} \frac{p}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

Circular motion about a drifting centre.

Muon Beam: Bent Solenoid Drifts

At entrance to bent solenoid

After 90° of bent solenoid

- O Drift due to bent solenoid: position and momentum correlated
- Vertical dipole field applied
 - Tuned to maintain nominal momentum on axis
- Collimators select for charge and momentum

See talk by Yang Ye on Thursday

Proton Beam: Timing

- Pulsed beam removes beam-related backgrounds
- Need pulse timing > muon lifetime in aluminium
 - Muon lifetime on Aluminium: 864 ns
- As few protons between pulses as possible:
 - Extinction factor:

 $\mathsf{Extinction} = \frac{\mathsf{N}(\mathsf{Protons\ between\ pulse})}{\mathsf{N}(\mathsf{Protons\ in\ bunch})}$

- Many novel techniques:
 - Production Target:
 - Super-conducting capture solenoid
 - Pions in backwards direction
 - 8 GeV protons
 - Muon beam-line
 - Bent solenoid drifts
 - Dipole and collimator tunes
 - Detector system
 - Bent solenoids
 - Bound muon decay spectrum near signal window
- → Need to understand and model each sub-section accurately

Target

Pion Capture Section

Goals of Phase-I

- Understand production system
- Understand bent solenoid dynamics
- Prototype the detector
- Measurement of background sources
- \bullet μ -e conversion search at: 3×10^{-15}

Straw Tube Tracker + ECAL (StrECAL)

- Straw Tube Tracker planes + Crystal ECAL
 - Straw Tracker ⇒Momentum measurement
 - ECAL ⇒ Energy measurement
 - Combination ⇒ PID
- O Used for beam characterisation in Phase-I
- Main detector design for Phase-II

Straw Tracker

- Phase-I Straw Design
 - Based on NA62 Straws with single seam weld
 - 20 micron aluminised mylar
 - 9.8 mm diameter tubes
- Phase-II possibilities:
 - 5 mm diameter
 - 12 micron Al-mylar
- Status
 - Phase-I production finished (2500 straws)
 - Aging tests, resolution studies underway

ECAL StrECAL Trigger and Energy Measurement for PID

- 2272 LYSO Crystals
 - O Dimensions: 2x2x12 cm
- Status:
 - Crystal purchasing on-going
 - Test bench being built
 - Beam tests for resolution studies,
 PID and DAQ underway
 - Calibration system being designed

Beam test setup for resolution study

Cylindrical Detector (CyDet)

- Cylindrical Drift Chamber (CDC) triggered from hodoscopes made of Cherenkov counters and plastic scintillators
- 60 cm inner radius
 - ⇒ Blind to particles with momentum less than 60 MeV/c
 - Avoids beam flash and most electrons from bound muon decay
- Momentum measurement using drift chamber
 - Low material budget improves resolution
 - All stereo wires to recover Z information
- Possible Track Trigger being investigated for running at high rates
 - four fold coincidence of hodoscopes + drift chamber hits
 - 30~40 kHz has been studied.

Electrons from Bound Muon Decay

Cylindrical Drift Chamber (CDC)

- 20 layers with alternating stereo angles of ±4°
 - Sense wires: Gold plated tungsten, 25 μm
 - Field wires: Pure Aluminium, 120 μm
 - Between 800 and 1200 wires per layer
- Status:
 - Wire stringing:
 - 150 days total
 - 40% complete

Backgrounds

From Phase-I TDR (2014) From Phase-II CDR (2009)

Type	Background	Predicted number of Phase-I [5]	f events per run Phase-II [3]
Intrinsic	Muon Decay-in-Orbit	0.01	0.15
	Radiative Muon Capture	0.00056	< 0.001
	μ^- Capture w/ n Emission	< 0.001	< 0.001
	μ^- Capture w/ Charged Part. Emission	< 0.001	< 0.001
Prompt	Radiative Pion Capture	0.00023	0.05
	Beam Electrons	0.00083	$< 0.1^*$
	Muon Decay in Flight	≤ 0.0002	< 0.0002
	Pion Decay in Flight	≤ 0.00023	< 0.0001
	Neutron Induced		0.024
	Other beam induced B.G.	$< 2.8 \times 10^{-6}$	
Delayed	Delayed Radiative Pion Capture	~ 0	0.002
	Anti-proton Induced	0.007	0.007
	Other delayed B.G.	~ 0	
Cosmic	Cosmic Ray Muons		0.002
	Electrons from Cosmic Ray Muons	< 0.0001	0.002
	Total background	0.019	0.34
	Signal (Assuming $B = 1 \times 10^{-16}$)	0.31	3.8

Assumed extinction factors:

Phase-I: 10⁻¹¹

Phase-II: 10⁻⁹ (to be updated)

Run times:

Phase-I: 110 days

Phase-II: 1 year

Backgrounds

From Phase-I TDR (2014) From Phase-II CDR (2009)

Type	Background	Pre	dicted number of Phase-I [5]	events per run Phase-II 3
Intrinsi	c Muon Dear-in-Orbit		0.01	0.15
	Stopped muon		0.00056	< 0.001
			< 0.001	< 0.001
	μ ⁻ Capture processes Emission		< 0.001	< 0.001
Prompt	Radiative Pion Capture		0.00023	0.05
	Beam Electrons		0.00083	$< 0.1^*$
	Beam contaminants		≤ 0.0002	< 0.0002
	Pion De (Extinction Supressed)		≤ 0.00023	< 0.0001
	Neutron Induced		_	0.024
	Other beam induced B.G.		$< 2.8 \times 10^{-6}$	-
Delayed			~ 0	0.002
	And Beam contaminants		0.007	0.007
	Other delayed B.G.		~ 0	i —
Cosmic Ray Mucs Electrons from Cosmic Yuons			-	0.002
	Electrons from SOSIMISMuons		< 0.0001	0.002
	Total background		0.019	0.34
	Signal (Assuming $B = 1 \times 10^{-16}$)		0.31	3.8

24

Assumed extinction factors:

Phase-I: 10⁻¹¹

Phase-II: 10⁻⁹ (to be updated)

Run times:

Phase-I: 110 days

Phase-II: 1 year

Software and Simulation

Looking for a rare process:

• Chance of conversion per capture at least (Phase-I): 10^{-15}

Need many muons:

 $lue{\bullet}$ Stopped muons: 1×10^{16} muons

• Protons needed: 2×10^{19} protons

Software challenges:

High Statistics

<u>Detailstics</u>

- Killing volumes
- Resampling
- Factorisation of spectra
 Physics processes

<u>Detail</u>

- Geometry
- Fieldmaps
- Physics processes (hadron models, stopped muon processes)

Offline Software

- Based on framework for the T2K near-detector, ND280
- Re-uses low-level code already tested on real data
- First stable release for COMET in April
- 2nd major Monte Carlo production recently finished

Software and Simulation

Schedule

Collaboration

14 Countries, 32 institutes, 177 participants

Summary

Muon-to-electron conversion is a strong probe of new physics

COMET's staged approach and unique design makes it highly sensitive to this process

Development and construction are well under way

COMET Phase-I

2018

Sensitivity $< 3 \times 10^{-15}$

110 days

3.2 kW proton beam

COMET Phase-II

2021

Sensitivity $< 3 \times 10^{-17}$

1 Year

56 kW proton beam

The future:

PRISM / PRIME

Sensitivity $\ll 10^{-18}$

See talk by J. Pasternak

Muito Obrigado!

Back-ups

Why an Aluminium Target?

- Maximise atomic lifetime compared to beam flash duration
- Minimise binding and nuclear recoil energies
- Maximise capture branching ratio
- (Phase-I: Minimise emissions following muon nuclear capture)

Muon Beam: Bent Solenoid Drifts

$$D \propto \frac{1}{qB} \frac{p}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

$$\implies D \sim \frac{p}{q}$$

A collimator can then select for:

- Momentum
- Charge

See talk by Yang Ye on Thursday

Stopped Muon Processes

Bound Decay

- B.R. = 45% (on Aluminium)
- Free Michel decay spectrum modified by presence of nucleus
- Background: Electrons close to signal window

Nuclear Capture

- B.R. = 55% (on Aluminium)
- Often followed by charged or neutral particle emission
- Background: Asymmetric pairproduction of emigtted gamma rays
- Detector complications
- See Alcap talk on Wednesday

Cosmic Ray Veto

- Particle mis-identification
- Signal-like electrons:
 - Delta ray from detector material
 - Decaying muons

J-PARC

Read-out, DAQ and Triggers

• DAQ and read-out:

- Full waveform digitisation
- Straw Tubes, ECAL and Cherenkov Triggering
 Hodoscopes read-out with ROESTI developed at KEK
- CDC will use RECBE board from Belle-II
- MIDAS DAQ system

Trigger

- Separate trigger primitives produced at each subdetector
- FC7 board developed for CMS used to make global trigger decision
- Hardware and software R&D for CDC Track-trigger

Proton extinction methods

Yoshitaka Kuno

Proton Extinction Factor

single bunch kicking

- Protons remaining in empty buckets cause deterioration of the extinction factor
- confirmed in previous studies with FX and SX (30GeV), $R_{ext} = O(10^{-7})$
- Double injection kicking
- Single Bunch Kicking
- Delay the injection kicker excitation timing by 598 nsec
- Measure the beam directly at the MR abort line (FX)
- extensive study with 10¹¹ protons in a bunch cf. 10⁷ p's in the previous study at FX

University

Proton Beamline

- Hadron Experimental Facility (HD) is currently under modification to have more beam lines; High-p beam line & the COMET beam line.!
- Realized by putting a Lambertson magnet and extending the experimental hall.

CDC Beam Tests

- Proto-type detector using same wire configuration as final CDC
- Beam test this spring
 - Analysis on-going
- Cosmic tests with 1 T magnetic field later this year

