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ABSTRACT
Within the framework of fusion technology research and development, a neutron source has long been considered a key facility to perform irradiation tests
aiming at populating materials engineering database — supporting DEMO reactor design and licensing. New Sorgentina Fusion Source (NSFS) has been
proposed taking advantage of well-established D-T neutron generators technology, scaled in order to attain a bright source of about 10%® n/sec. Actual 14 MeV
neutron spectrum is a relevant feature. lon beams of 30 A are produced and accelerated up to some 200 keV energy. Present design considers ion generators
and extraction grid technology employed in neutral injectors currently utilized at large experimental tokamaks. Then deuterium and tritium ion beams are
delivered to the target - impinging on a hydride thin layer which is on-line D-T reloaded via ion implantation. Metal hydride is continuously re-deposited
preventing layer from being sputtered, increasing installation load factor. Large and fast rotating target is conceived to enhance heat removal - coping with

thermal transients and mechanical loads. Design is aimed at achieving challenging performances regarding elevated heat flux of 60 kW/cm?2 and thermal

fatigue concerns. Main facility characteristics are provided, as well as target thermal and mechanical issues.
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¢ 200 cm? beam size (20cm x 10 cm)
¢ RF source: higher monoatomic yield (fusion probability)
* 20 sec {up to quasi-continuous) pulse duration
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