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Inputs to High Power Target design envelope
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Average w,u yield per proton per GeV
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Heat Removal and Thermal stresses

Target Power Deposited Peak Temperature Existing or proposed
[kW] Jump [K] solution
Mu2e 2 0.0014
Peripherally cooled
T2K 15 100 cylinder
Numi 4 364
Peripherally cooled
Nova 8 253 segmented
LBNE 23 75+
ISIS 100 3.8 Segmented with
EuroNu >00 6 cooling through core
Neutrino Factory 500 10007 Flowing or rotating
target
ESS 3000 100 Rotating target with
cooling through core
of target
T Davenne Segmentation is a powerful tool to improve cooling

and reduce stresses although there’s no such thing
as a freeride..
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Heat Removal and Thermal Stress Summary
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@ Mu2e (8GeV, 25kW, 588kHz, 100ns,
1mm)

B T2K (30GeV, 750kW, 0.47Hz, 5us,
4.24mm)

A Numi (120GeV, 400kW, 0.53Hz, 8ps,
1mm)

X Nova (120GeV, 700kW, 0.75Hz, 8us,
1.3mm)

® LBNE (120GeV, 2.3MW, 0.75Hz, 10ys,
1.5mm+)

+ ISIS (800MeV, 160kW, 50Hz, 200ns,
16.5mm)

/. EURONu (4.5GeV, 4MW, 50Hz, 5ys,
4mm)

@ Neutrino Factory (8GeV, 4MW, 50Hz,
2ns,1.2mm)

S2 ESS (2.5GeV, 5MW, 14Hz, 2.86m:s)
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Helium cooling velocity streamlines

Maximum velocity = 398 m/s

Beam 30GeV, 750kW
Target 23kW, 7TMPa
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Monolithic (peripherally cooled) target: T2K
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Monolithic radiation cooled target: Mu2e
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EUROPEAN
SPALLATION
SOURCE

5 MW target: helium
cooled tungsten wheel

5.000 15.000

Segmentation is
necessary to remove
the heat and a higher
degree of
segmentation may be
required to reduce
the peak stresses
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Segmented target: ESS wheel
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Segmented Target: NuMi

5K temperature jump in water
40K temperature jump in Steel
cooling tubes
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Segmented Target: EURONu

L _ Increased surface area. Coolant reaching
Stress limit reached for solid maximum energy deposition region

... peripherally cooled target
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Segmented target: LBNE

Analysis of dynamic stresses: effect of target segmentation
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Fragmented high Z flowing target: W powder rig

Offline testing

— Pneumatic conveying
(dense-phase and lean-phase)

— Containment / erosion
— Heat transfer and cooling of powder
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Dense-phase delivery

High speed image: tungsten powder jet

High speed image: tungsten powder flow in a pipe

Unstable tungsten powder jet

Lean-phase lift

Powder lifting pressure drop
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Improving diagnostics to increase the solid fraction

glass parts tube show early stages of phase separation
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In beam tests at CERN

Lift 1
Table
* Tungsten powder sample in an open trough
configuration

. Helium environment

* Two layers of containment with optical windows to view
the sample

« Remoté“diagnostics via LDV and high-speed camera



Charitonidis
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Shot #8, 1.75e11 protons ’ L L LU

Note: nice uniform lift

Shot #9, 1.85e11 protons
Note: filaments!

Trough photographed after the experiment.
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Davenne: CFD predictions/post fits

Beam heating
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Tungsten powder puff experiment:
understanding the powder lift

piston

Puff cell
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Tungsten powder puff experiment

« Aim: To compare behaviour of Tungsten
powder after a short pressure spike against
the behaviour in the HiRadMat experiment

 Method: Use a short pressure pulse to lift the
powder

Rutherford Appleton Laboratory



Tungsten powder puff experiment

o powder is proportional to the energy put
in by the compression of the piston

a1 i

* The powder sample containing smaller
particles was lifted higher than the
- sample containing only larger particles
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\ There is a threshold energy
which has to be reached
before the powder begins to
lift. The threshold depends
on the depth of the powder
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Tungsten powder puff experiment

Powder depth  Powder depth Powder depth < The smaller the depth of powder,
=13.5mm =15.5mm =22.5mm the larger the maximum powder
height reached
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Understanding powder lift

Pressure drop for air flowing through a bed of powder

Atherton, Davenne



Packed bed experiment

Experimental pressure drop measured across
a packed bed of W powder is in line with the 47 _ UZ[M N ZJ il 3
analytical pressure drop given by Ergun * s Keat v des
(employed by CFX)
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Tungsten Powder programme live areas of work

* Rig improvement
* Increasing the solid fraction
e CW upgrade
* Calorimetry
* In beam tests HiRadMat
* Understanding factor/factors for beam powder lift
* aerodynamic
e stress propagation
e Electrostatic
* acombination of all the above
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Conclusions

Peripherally cooled cylindrical monolith targets have limited heat dissipation
capability and experience high steady state and dynamic stresses.

Segmented internally cooled stationary targets can accommodate much higher
heat loads and higher power densities.

A pebble bed target such as that proposed for EURONu is probably the ultimate
segmented target and may be relevant for other facilities where a solid cylindrical
target is not viable. R & D in pebble bed and other segmented targets would be
beneficialfor future neutrino facilities and neutron sources alike.

At higher beam powers it may become necessary to employ flowing (powder and
liguid metals) or rotating targets and that is why research in this area is required.

Physics performance is a function of reliability as well as optimum particle yield
so the simplest target design possible is often the best choice.

Science & Technology Facilities Council

W@ Rutherford Appleton Laboratory



