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Radiation cooling
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High temperatures require refractory metals and also good vacuum
quality to avoid target loss through oxidation and evaporation cycles



Forced Convection

Consider turbulent heat transferin a N = 0.4 for fluid being heated
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Nucleate Boiling

Vapour bubbles forming at nucleation sites and separating from the heated surface
thus enhances mixing and heat transfer
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Critical heat flux

forced convection water flow (original graph Wimblett)
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Burnout flux sensitive to channel thickness
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Acoustic transducer used to detect burnout
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Maximum heat flux could be achieved by monitoring for burnout
Heat flux may be limited by erosion due to high water velocities



Other ideas

Hypervapotrons

*Water cooled finned heat exchangers developed to cope with the high heat fluxes present in
experimental fusion devices and ancillary systems.

*Water flow, heat load and channel width tuned to generate a repetitive cycle that moves steam out
into the sub cooled bulk flow.

*Typically, these can sustain power densities of up to 20-30 megawatts/m? in steady-state, using water
at flow velocities < 10 m/s and operating pressures < 10 bar.
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Fig.2a: Hypervapotron beam stoppimg elemenis as used in the JET Test Bed beam bump..

Nanofluids

*Water-based nanofluids (suspensions of 0.001-10% nanoparticles, <100nm) have the potential to
deliver much improved cooling while retaining the advantages of water.

*10-14% increase in convective/conductive heat transfer and 100-200% increase in critical heat flux
have been reported.

*Long-term stability of nanofluids, the deposition of particles, and their effect on erosion are not well

understood. S. K. Das et al., Nanofluids, First ed., John Wiley & Sons, 2007



Summary
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The Calculation of Critical Heat Flux in Forced Convection Boiling
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Critical heat flux of forced convective boiling in
uniformly heated vertical tubes with special
reference to very large length-to-diameter ratios
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