

Megawatt targets (and horn) for Neutrino Super-Beams

RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney, Otto Caretta

LBNE study in collaboration with : Patrick Hurh, Bob Zwaska, James Hylen, Sam Childress, Vaia Papadimitriou (Fermilab)

EUROnu Superbeam study in collaboration with:

Andrea Longhin, Marco Zito (CEA Saclay) ;

Benjamin Lepers, Christophe Bobeth, Marcos Dracos (Universite de Strasbourg)

""."". Conventional' neutrino beams: where we are **Targets**

NuMI MINOS target (J.Hylen)

CNGS Target

13 graphite rods, each 10cm long, Ø = 5mm and/or 4mm 2.7mm interaction length

Ten targets (+1 prototype) have been built. \rightarrow Assembled in two magazines.

4

proton beam focus

Edda Gschwendtner, CERN

T2K Target and horn

 \bullet

Existing target technologies

High Powe Neutrino 'Superbeams': where we want to go

Target Basics (J.Hylen)

Long enough (2 interaction lengths) to interact most protons Dense enough that 2 λ_{int} fits in focusing system depth-of-field Radius: R $_{\text{target}}$ = 2.3 to 3 R $_{\text{beam}}$ (minimize gaussian tails missing target) Narrow enough that pions exit the sides without re-absorption

(but for high $\mathsf{E}_{\mathsf{proton}}$ and low E_{v} , secondary shower can help) High pion yield (but to first order, v flux α beam power)

Radiation hard

High Pow

Targets

Withstand high temperature

High strength (withstand stress from fast beam pulse)

 Low density (less energy deposition density, hence less stress; don't reabsorb pions)

Low dE/dx (but not much variation between materials)

High heat capacity (less stress induced by the dE/dx)

 Low thermal expansion coefficient (less stress induced by the dE/dx) Low modulus of elasticity (less stiff material does not build up stress) Reasonable heat conductivity

Reasonable electrical conductivity (monitor target by charge ejection)

CNGS, NuMI, T2K all using graphite

High **CERN=> Frejus SB: Target material & particle yields**

Pion yields comparable for carbon and mercury targets Neutron flux for Hg reduced by \sim \times 15 with C !!

(lower neutron flux => lower heating and radiation

(A. Longhin)

High Powe First Target material & heat loads (A. Longhin) Released power (MW) vs Ep. 4 MW input.

LBNE optimisation of Target and Beam dimensions: a simple 'Figure of Merit'

- Target performance evaluated using FLUKA to generate a simple 'Figure of Merit'
- 'FoM' is convolution of selected pion energy histogram by a weighting function:

$$
- W(E) = E^{2.5} \qquad \text{for}
$$

- 1.5 GeV < E < 12 GeV
	- pT <0.4 GeV/c
- Weighting function compensates for low abundance of most useful (higher energy) pions
	- Devised by R.Zwaska (FNAL)
	- Implemented in FLUKA by Tristan Davenne

Change in FoM with target radius

Physics vs Engineering Optimisation ? Target and Beam Dimensions

- For pion yield smaller is better
	- Maximum production and minimum absorption (shown by FoM)
- For target lifetime bigger is better
	- Lower power density lower temperatures, lower stresses
	- Lower radiation damage density
- For integrated neutrino flux, need to take both neutrino flux and lifetime factors into account
	- Want to make an assessment of trade off between target lifetime vs beam and target dimensions
	- Answer will depend on Target Station engineering (time to change over target and horn systems)

Target configurations considered for Superbeams Targets

LBNE at Fermilab

- Integral target and horn inner conductor
	- Solid Be rod

High Power

- water spray cooled
- Separate target installed inside bore of horn inner conductor
	- Graphite, water cooled (IHEP study (baseline))
	- Be: subdivided in z, water cooled
	- Be: spheres, helium cooled
- 2. EUROnu SuperBeam using high power SPL at CERN

4-horn system $(4 \times 12.5 \text{ Hz})$

- 'Pencil' shaped beryllium rod
- 'Packed bed' of titanium beads
- Integral target and horn inner conductor
- (Graphite excluded due to radiation damage concerns)
- 3. Other ideas

Fluidised bed for ultra-high powers

Magnetic modelling

LBNE target: Stress-Waves

- "static" stress component is due to thermal gradients
	- Independent of spill time

- "static" stress component is due to thermal gradients
	- Independent of spill time
- "dynamic" stress component is due to stress waves
	- Spill time dependent

- "static" stress component is due to thermal gradients
	- Independent of spill time
- "dynamic" stress component is due to stress waves
	- Spill time dependent
- Tspill > Radial period
	- Radial stress waves are not significant

- "static" stress component is due to thermal gradients
	- Independent of spill time
- "dynamic" stress component is due to stress waves
	- Spill time dependent
- Tspill > Radial period
	- Radial stress waves are not significant
- Tspill < Longitudinal period
	- Longitudinal stress waves are important!

Conclusions on combined target/horn IC

- Very simple design concept
- But complex, combined horn current pulse and beam pulse effects
- Need to reduce longitudinal Lorentz stresses requires target diameter to be larger than desired for optimum pion yield
- Effects of off-centre beam 'violin modes' problematic, in combination with longitudinal vibration modes
- Recommend looking at longitudinally segmented target separate from horn

Direct water cooling? Effects of pulsed beams on NuMI target

High Pow

Targets

Result: ^Δ^T

10 Conclusions: Try to avoid using 5 contained water in close proximity to intense ٥ pulsed beams

 0.100 (m)

0.050

Otto Caretta & Tristan Davenne

Pressurised helium cooled concept (2 MW)

Otto Caretta & Tristan Davenne

LBNE target study: conclusions for 2.3 MW

- Combined target/horn inner conductor
	- Not recommended as dimensions dominated by horn current pulse Lorentz forces rather than pion production
- Candidate beryllium target technologies for further study:
	- 1. Water cooled longitudinally segmented (possible)
	- 2. Pressurised helium cooled separate spheres (recommended)

EURONu Super Beam study using HP SPL -> Frejus

 \Rightarrow 4 x 12.5 Hz operation using beam separator proposed

Beam parameters used:

• Beam KE: 4.5GeV

High Powe

Targets

- 1.11e14 protons/bunch
- Beam Sigma: 4mm
- Beam Power: 4×1 MW

Stress in a solid peripherally cooled beryllium rod

beam energy

High Pow

Targets

Peter Loveridge

High Powe **Targets**

"Pencil" Target Concept Design

- Pencil shaped Beryllium target contained within a Titanium "can"
- Pressurised Helium gas cooling, outlet at 10 bar
- Supported as a cantilever from the upstream end

Rutherford Appleton Laboratory

Optimisation of channel profile: it works...

R3 = 14.4mm

But: 'dancing on head of pin' for off-centre beam

• Lateral deflection 50% greater, and in opposite direction, to beam mis-steer

Energy deposition for 2 sigma beam offset

High Powe

0 mm 13 mm

- => Unstable
- => not recommended

How about that particle bed idea?

Helium gas cooled granular target proposed by Sievers and Pugnat

Pion production comparison (FLUKA)

Longitudinal profile with PB "similar" to the graphite one (and more $\pi!$)

The horn should work well

A. Longhin

Third EUROnu annual meeting, RAL 18 Jan 2011

Particle bed advantages

- Large surface area for heat transfer
- Coolant can pass close to maximum energy deposition
- High heat transfer coefficients
- Low quasi static thermal stress
- Low dynamic stress (for oscillation period «beam spill time)

... and challenges

- High pressure drops, particularly for long thin superbeam target geometry
	- Need to limit gas pressure for beam windows
- Transverse flow reduces pressure drops but
	- Difficult to get uniform temperatures and dimensional stability of container

Packed Bed Target Concept Solution

Packed bed cannister in symmetrical transverse flow configuration

T.Davenne

Titanium alloy cannister containing packed bed of titanium alloy spheres Cannister perforated with elipitical holes graded in size Cold flow in along length Hot flow out

Model Parameters

Proton Beam Energy = 4.5GeV Beam sigma = 4mm Packed Bed radius = 12mm Packed Bed Length = 780mm Packed Bed sphere diameter = 3mm Packed Bed sphere material : Titanium Alloy **Coolant = Helium at 10 bar pressure**

Science & Technology Facilities Council Rutherford Appleton Laboratory

Packed Bed Model (FLUKA + CFX v13)

Packed Bed temperatures

Outer Can Surface Temp

Almost Symmetric Temperature contours Maximum surface Temperature = 426K = 153°C

NB windows not included in model yet - Double skin Be should withstand both heat and pressure loads Pow

And finally: a flowing powder target for the highest beam powers?

Test rig at RAL

Still image from video clip of tungsten power ejected from 1.2 m long x 2 cm diameter pipe

On-line 'Powder thimble' experiment on HiRadMat planned for this autumn

Fargets Conclusions: 'Divide and Rule' for higher powers

Dividing material is favoured since:

• Better heat transfer

High Pow

- Lower static thermal stresses
- Lower dynamic stresses from intense beam pulses

Helium cooling is favoured (cf water) since:

- No 'water hammer' or cavitation effects from pulsed beams
- Lower coolant activation, no radiolysis
- Negligible pion absorption coolant can be within beam footprint
- **Static, low-Z target concepts proposed for 4 x 1 MW for SPL SB @CERN and 2 MW for LBNE @FNAL**

