

Target Options for a Neutrino Factory

<u>Chris Densham</u>, Otto Caretta, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney

Objectives for Target Station

- Target Station is an engineering task
 - With scientific objectives
- Focus on NF (and MC?)
- Objective: maximise useful pion yield per 10^7 s year of operation, over 10 (20?) year lifetime
- Yield = instantaneous yield x reliability
 - Instantaneous yield is most fun to study
 - · has received (almost) all attention so far
 - Reliability includes:
 - Mean time between failure
 - Speed of target, (shield, solenoid etc) changeover
 - Difficult (and less fun) to assess

Key target station issues	Candidate/required technologies
1. Target	1a. Liquid Hg jet1b. Fluidised W powder1c. Solid W bars1d. Low Z targets
2. Beam window	Thin low Z windows (beryllium)
3. NC inner solenoid	Conventional copper
4. SC outer solenoid	4a. Nb3Sn 4b. HTS
5. Solenoid shield	WC
6. Target station engineering	Target integration Remote maintenance Shielding
7. Beam dump	7a Liquid Hg 7b For W bars?

7c W powder?

Conventional neutrino beam horn

8. Horn back-up? (2 drivers for 2

9. Safety / environmental

signs!)

NF vs MC?

- Muon Collider requires point-like source
- High Z target material strongly favoured
 - Liquid mercury jet is baseline
 - See Kirk MacDonald plenary talk tomorrow for latest news
- Convenient to regard Neutrino Factory target station as prototype for Muon Collider
- If one decouples NF from MC, does one end up with same answer?
- For a NF, are other options possible/preferable?
- Can the beam size be increased (from 1.2 mm (rms) baseline)?

Heat loads in baseline Target Station (J.Back)

High Powe

Science & Technology Facilities Council
Rutherford Appleton Laboratory

Baseline solenoid system: Two factors lead to significant technical challenges

- Demanding Magnet Parameters High field (14 Tesla) in a large bore (1.3 m)
 - Huge magnetic forces (10,000 Ton)
 - Large stored energy (~600 MJ)
 - Low temperature margin of superconductor
 - Pushing at the limits of present superconductor technology
- 2. Harsh Radiation Environment Heating and material damage Issues
 - Heat load from 4 MW pulsed proton beam
 - Total Heat load into the cold mass
 - Local Power Density
 - Instantaneous pulsed heating effects
 - Radiation damage to materials
 - Superconductor
 - Stabiliser
 - Turn-to-turn insulation
 - Load Bearing Elements

Plus one or 2 liquid mercury jet challenges

Disruption of beam dump by mercury jet

Disruption of beam dump by non-disrupted proton beam

Tristan Davenne

Alternatives to liquid mercury jet?

A few personal comments:

- · A neutrino factory will not be built any time soon
- The target station is likely to be the limiting factor in the performance of the facility
- Worth spending time looking at as wide a range of alternatives as possible

Fluidised tungsten powder: broadly compatible with baseline

- 1. Suction / Lift
- 2. Load Hopper
- 3. Pressurise Hopper
- 4. Powder Ejection and Observation

- Rig contains 100 kg
 Tungsten
- Particle size < 250 microns
- Discharge pipe length c.1 m
- Pipe diameter = 2 cm
- Typ. 2-4 bar (net)
 pneumatic driving
 pressure (max 10 bar)

Pneumatic Conveying Regimes Explored so Far

Low Velocity

Increasing Driver Pressure

High

Velocity

A Solid Dense Phase

- Pipeline full of material, 50% v/v
- Low velocity
- Not yet achieved in our rig further work

B. Discontinuous Dense Phase

C. Continuous Dense Phase

D. Lean Phase

- Low fraction of solid material
- High velocity = erosion!
- Used in vacuum recirculation line

Schematic of implementation as a Neutrino Factory target

NB Alternative configurations possible

Average π,μ yield per proton (%)

Pion+muon production for variable length 50% material fraction W vs 100% Hg

Science & Technology Facilities Council

Rutherford Appleton Laboratory

Meson Production at 8GeV (X.Ding)

Target	50% W	Hg
	(9.65 g/cm ³)	(13.54 g/cm ³)
	with optimization*	with optimization
Meson	29069	28819
	(pos: 14099	(pos: 13613
	neg: 14970)	neg: 15206)

^{*}Target radius: 0.47 cm, target angle: 80mrad, target length: 45cm

HIGH RADIATION TO MATERIALS – HIRADMAT@SPS A NEW IRRADIATION FACILITY AT CERN FOR

MATERIAL TESTING

Powder 'thimble' test is scheduled to be first ever experiment on HiRadMat this autumn

Ilias Efthymiopoulos, CERN

4th HPTWorkshop - Malmoe , May 6, 2011

Friday, May 6, 2011

Experimental setup

Re-circulating solid tungsten bar ideas

J. R. J. Bennett¹, G. P. Škoro², J. J. Back³, D. W. J. Bellenger¹,

C. N. Booth², T. R. Edgecock^{1,4}, S. A. Gray¹, D. M. Jenkins¹, L.

G. Jones¹, A. J. McFarland¹, K. J. Rogers¹.

Helmholtz Coil Geometry

That's enough about heavy metals

 Is a low Z target an attractive option for a Neutrino Factory?

Target material & heat loads (A. Longhin)

Pow

Particle production vs target material

Hg

- •Proton kinetic energy = 2-10 GeV
- Integrated pion yields comparable for carbon and mercury targets
- ·Neutron flux for Hg reduced by ~ x15 with C!!

(lower neutron flux => lower heating and radiation damage to solenoid system)

(A. Longhin)

Useful pion/muon yields for different Z's and beam energies (J.Back)

Packed bed ideas: more attractive for lower Z

Relevant papers:

- A helium gas cooled stationary granular target (Pugnat & Sievers) 2002 [considered for a neutrino factory target with 4MW beam]
- Conceptual Designs for a Spallation Neutron Target Constructed of a Helium-Cooled, Packed Bed of Tungsten Particles (Ammerman et al.) [ATW, 15MW power deposited, 36cm diameter]

And let's not forget about beam windows

- -T2K beam window (M Rooney)
- -Double-skinned titanium alloy window, cooled by helium gas
- Installed October 2009
- Designed for 30 GeV, 0.75 MW beam power

4 MW beam window

Yield strength of beryllium @ 260°C is around 200 MPa. This leaves a small safety factor for a beryllium window with these beam parameters.

HP SPL beam parameters

Beam energy: 5 GeV

Protons per pulse: 1.5×10^{14}

Frequency: 50 Hz

Pulse length: 5 microseconds

Beam size: 4 mm (rms)

A few comments on future programme

Target technology

- main focus of NF/MC target station work since Study II (ie last 10 years)
- at least 1 'champion' of each of 3/4 target technologies
- Good to have alternatives (provided does not distract from other work that needs to be done see below)

Solenoid System

- Most critical technological issue for NF/MC Target Station?
- Current baseline appears far from feasible
- NB 'Brute force' solution with extra shielding:
 - Stored energy α r^2
 - Only very recently receiving any attention
- Activation/handling/safety/environmental issues
 - The other most serious feasibility issue?
 - Nobody working on it?

Cost / Design Issues

- Cost ⇔ technical risk
- Build costs ⇔ running costs?
- Integrated yield \(\Display \) integrated costs?
- Target Station Design choices depend on grasp of these issues
- May be worth revisiting:
 - Beam energy
 - Target Z
 - Beam size
 - Solenoids vs horns (and 2 proton drivers...)?