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Looking for the 'Goldilocks' target
technology
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Fluidised powder target propaganda

Shock waves
- Material is already broken - intrinsically damage proof
- No cavitation, splashing or jets as for liquids
- high power densities can be absorbed without material damage

- Shock waves constrained within material grains, c.f. sand bags used to
absorb impact of bullets

Heat transfer

- High heat transfer both within bulk material and with pipe walls - so the
bed can dissipate high energy densities, high total power, and multiple
beam pulses

Quasi-liquid
- Target material continually reformed
- Can be pumped away, cooled externally & re-circulated
- Material easily replenished

- Other

- Can exclude moving parts from beam interaction area
- Low eddy currents i.e. low interaction with NF solenoid field
- Fluidised beds/jets are a mature technology

wgn \ - Most issues of concern can be tested off-line -> experimental
Pow programme
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Questions for the experimental programme

Can a dense material such as tungsten powder be made to flow?

Is tungsten powder fluidisable (it is much heavier than any material
studied in the literature)?

Is it possible to generate a useful fluidised powder geometry?
Is it possible to convey it

- in the dense phase?

- in the lean phase?

- Inastable mode?

What solid fraction is it possible to achieve?
(a typical loading fraction of 90% w/w solid to air ratio is not good
enoughl)

How does a dense powder jet behave?

Difficult to model bulk powder behaviour analytically
Physical test programme underway:
- First results March 2009
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Test rig at RAL

- Powder

- Rig contains 100 kg
Tungsten

- Particle size < 250
microns

- Total ~10,000 kg powder
conveyed so far

- > 100 ejection cycles

- Equivalent 1o 20 mins
continuous operation

* Batch mode
- Tests individual handling

processes before moving
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Summary of
Operation

1. Suction/ Lift
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Summary of
Operation

1. Suction/ Lift
2. Load Hopper
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Summary of
Operation

1. Suction / Lift
2. Load Hopper
3. Pressurise Hopper
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Summary of
Operation
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1. Suction/ Lift
2. Load Hopper
3. Pressurise Hopper
4. Powder Ejection and Observation
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Control Interface

Experiment
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*  Fully automated control system
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Logging... Air Monitor
@va Stand back, recirculating the powder!
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— Manual Operation

Process control
Data Logging @ 20 Hz
Hard-wired safety interlocks

Data Logaing

Auto mode -
(%) Data logging
Suction
Mas time [s] 200

Frequency [Hz] 30

Emergency
stop

Suction

— Powvder drop
Drop [s] 10
Load pot
Pressurise hopper

Ejection
Maxtime [] 12
Frequency [Hz] 50

— Complete cycles

Cycles No 1

settings

Ejection

Ejection cycles: 104
Ejection Time: 121 88 s
Suction Time: 18750 s
Conweyed Mass: kg

settings

Control System Interface (MATLAB)
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Le jet AW

6000 fps {6000 sec frame : 4497 +00:00:00.74
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Contained stable flow

6000 fps 1/6000 sec 1024 x 256 frame : 9500 +00:00:01.583167
vy | ——

6000 fps




-} OpenPIY Matlab GUI

Select RO | ( Reset ROl Scale Yectors
)
‘Lneu Scaing Segment length [m] 0.026
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Velocity [m/s]

Skip frames 1

Successiuly Processed the files

Particle Image

Velocimetry
velocity distribution

required to determine
bulk density

Calculated velocity distribution
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i37 load cell [kg]

Variations in the flow rate - typical 2bar

frame : 4329

i22 flow RED-Y top [I/min]
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Bulk density?
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Erosion Monitoring
- Expect rig lifetime to be limited by wear 5

- Wall thickness monitoring:
- Dense-phase hopper / nozzle
* No damage
- Lean-phase suction pipework
+ Straight vertical lift to avoid erosion
- Deflector plates
- So far so good

- Design to avoid erosion problems is critical : |
- Lean phase optimisation ({u, 1p) Ultrasonic Thickness Gauge

- Avoid lean-phase bends v
- Operate without discharge valve v Material Vickers Hardness
- Replace deflector plate with powder/powder | Stainless-stcel 316L 140
impac-]- Tungsten 360
Alumina (Al,Os) 1500
High /A Boron Carbide (B,4C) 3200
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Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic
(,on\-:o_ymg

Regimes.
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Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic
Lom:o_ymg

Regimes.

) D. Lean Phase
H'gh Y 3 L
ve\locify *  Low fraction of solid material
High High velocity = erosion!
s - Used in vacuum recirculation line
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Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic
Lom:oymg

Regimes.

C. Continuous Dense Phase

Pipeline part full of material
Stable continuous flow
Intermediate velocity

D. Lean Phase

High
Ve\loci'ry - Low fraction of solid material
High High velocity = erosion!
eow Used in vacuum recirculation line
argets

Y i Science & Technology Facilities Council

i W@ Rutherford Appleton Laboratory




Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic
Conveying

Regimes.
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D. Lean Phase

Low fraction of solid material
High velocity = erosion!
Used in vacuum recirculation line
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Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic

Conveying B. Discontinuous Dense Phase

Regimes.

‘Pipeline almost full of material
‘Unstable "plug flow"
‘Intermediate velocity

C. Continuous

1024 x 256

Dense Phase

D. Lean Phase

High
Ve\locify *  Low fraction of solid material
High *  High velocity = erosion!
i 10 - Used in vacuum recirculation line
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Pneumatic Conveying Regimes

Low
Velocity

The Four Basic
Pneumatic
Conveying

Regimes.
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D. Lean Phase

Low fraction of solid material
High velocity = erosion!
Used in vacuum recirculation line
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Pneumatic Conveying Regimes

A. Solud Dense Phase

»  Pipeline full of material, 50% v/v
*  Low velocity
- Not yet achieved in our rig - further work

The Four Basic

Pneumatic
Conveying
Regimes.

B. Dlscon’rmuous Dense Phase

D. Lean Phase

- Low fraction of solid material
- High velocity = erosion!
- Used in vacuum recirculation line
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A Flowing Powder Target Layout Sketch
compatible with either solenoid or magnetic horn

* Potential powder target
materials
- Tungsten (W), p.,i419.3 g/cc
- Titanium? (Ti), p.,i44.5 9/cc
- Nickel (Ni), p,i48.9 g/cc

- Titanium Oxide (TiO,),
Psolig®-2 g/cc

Helium
Powder
hopper
Helium Magnetic horn
° ° o ° d
beam |
Beam o o o o o
window

Schematic layout of a flowing powder superbeam
target
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Flowing powder target: interim conclusions

Flowability of fungsten powder

- Excellent flow characteristics within pipes

- Can form coherent, stable, dense open jet (c.10 kg/s for 2cm dia)
- Density fraction of 42% + 5% achieved ~ static bulk powder density

- Recirculation

- Gas lift works for tfungsten powder (so far c. 2.5 kg/s, 4 x slower
than discharge rate.

- NB this is equal to discharge rate for new baseline 1 cm
diameter target at 10 m/s)

* Both contained and open powder jets are feasible
A number of different flow regimes identified

» Design to mitigate wear issues is important for useful
plant life - so far so good.

4 * No wear observed in any glass tubes used for
Ve discharge pipe tests
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Flowing powder target: future work

Optimise gas lift system for future CW operation
Attempt to generate stable solid dense phase flow

+ Investigate low-flow limit

» Carry out long term erosion tests and study mitigation
Study heat transfer between pipe wall and powder

Demonstrate magnetic fields/eddy currents are not a
problem

- Use of high field solenoid?
+ Investigate active powder handling issues (cf mercury?)
Demonstrate interaction with pulsed proton beam does

not cause a problem

- Application to use HiRadMat facility at CERN has been
submitted
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Abstract
Atungsten powder jet is a potential candidate technology for a particle production target in a future high power (i.e. Multi-MW) particle accelerator

based facility, such as a so-called conventional neutrino Super Beam, a proposed Neutrino Factory, or a future neutron source. To test the viability of
producing a suitable powder jet a few simple experiments were performed using standard pneumatic conveying equipment and the encouraging

results are presented.

Graphical abstract
This paper describes some preliminary studies of the production of a horizontal jet of powdered tungsten undertaken to investigate the viability of

such a jetfor use as a beam target in a high power particle accelerator (The Neutrino Factory Project).

Unstable tungsten powder jet leaving a 20 mm ID cylindrical nozzle
Hig
Po Keywords: Jet flow; Tungsten; Powder jet; High power target, Neutrino factory
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And Finally

*Live™ demonstration of tungsten
power jet today in R12 at 3:30 today
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