Review of NF-IDS Targets Work Programme Status

C. Densham, RAL, 17 November 2009

EUROnu WP3 (selected)

Del.	Deliverable name	Estimated	Delivery
No.		staff months	dd-mm-yyyy
D18	[] Evaluation of reference design for spent proton-beam handling system,	56 [part]	31-11-2011
	including a performance analysis. Recommendation of reference design		

IDS-NF Target system

Del.	Deliverable name	Estimated	Delivery
No.		staff months	dd-mm-yyyy
	The target task encompasses the liquid-mercury-jet delivery and recirculation system; the proton-beam/mercury jet interaction region; the collection of nested solenoids that collects the pions and produces a pion beam with a large energy spread in three 2 ns bursts		
CDR	Seminal? (Immaculate?) Conceptual Design Review – the 'start of the engineering'		10-04-2009!!
IDR	Cost estimate at 50-75% level		31-03-2011

Neutrino Factory Target System Work Programme

4.1	Baseline liquid mercury target and beam dump	Suggested involvement / responsibility	Status	
4.2	Make statement of IDS-NF baseline specifications		done	
4.3	Evaluate mercury handling infrastructure requirements, in particular revisions from Study2			
4.3.1	Evaluate costing in light of IDS-NF scenario revisions incorporating actual costs of SNS and JSNS and other relevant facilities, involving estimating:	ORNL? FNAL		
a)	Active volume of target station		?	
b)	Mass and cost of steel and concrete shielding		?	
c)	Cost of solenoid system		?	
d)	Cost of civil engineering, building and services		?	
e)	Cost of mercury system		?	
f)	Cost of remote handling systems including shielding required		?	
g)	Any other significant costs		?	
4.3.2	Beam window study	CJD, MR, MDF (RAL)	Just starting	
4.3.3	Incorporate HARP data into MARS/FLUKA/GEANT4 simulations	NM,GC	Underway?	
4.3.4	Pion/muon acceptance studies	HK, SB (RAL), JB (Warwick), GS	?	
4.3.5	Continue analysis of MERIT data on proton beam/liquid metal jet interactions	HK (BNL), KM (Princeton) GS (Sheffield)	Done?	
4.3.6	Extend MERIT MHD simulations	RS	Done?	

4.3.7	Mercury nozzle studies	RE(RAL), HK	Just starting?
4.3.8	Mercury erosion experiments for bore & nozzle	VG?	?
4.3.9	Baseline liquid mercury beam dump, decay solenoid and shielding system studies	CJD, TD, OC, PL (RAL),	
	including:	VG(ORNL)	
a)	Beam interactions with liquid beam dump, options for mitigation of splashing, erosion etc	TD	Stalled
b)	CFD studies of mercury jet interactions (splash) with dump & containment	TD	Stalled
c)	Studies of irradiation, heat loads and cooling of decay solenoid	JB, PL	Underway
d)	Heat loads and cooling of shielding	PL	Stalled
e)	Solenoid system engineering, magnetic loads	PL	Stalled
4.3.10	Develop engineering layouts for target station including:	ORNL/FNAL/RAL	
a)	Mercury handling and recirculation system	VG	Underway
b)	Beam windows + remote maintenance	CJD, MR	Not started
c)	Integration of mercury jet with capture solenoid, containment and shielding including	VG	Underway?
	concepts for remote maintenance		
d)	Integration of beam dump with decay solenoid, containment and shielding including	VG	Underway
	concepts for remote maintenance		
Materi	al compatibility with Hg	?	?

Cost models = generic for SB, NF, Eurisol

4.4	Alternative target technologies (I) re-circulating solid tungsten target	Suggested involvement / responsibility	Status
4.4.1	Interpretation of RAL off-line shock tests (VISAR data?)	JRJB (RAL), GS (Sheffield)	Done
4.4.2	On-line tungsten experiments (ISIS? BNL? ISOLDE?)	JRJB (RAL)?	Stalled?
4.4.3	Conceptual design for a horizontal axis spokeless solid-target wheel:	JRJB	Ongoing
	a) Radiation or water cooling		
	b) Drive & support system		
	c) Beam window integration (or no beam windows)		

4.2.4 Optimisation of 'Helmholtz' type geometry with the goal of minimizing the field dip in the	JB	Ongoing
target region.		
4.2.5 Develop a conceptual structure design for the Helmholtz magnet, which provides an	PL	No
entry/exit route for a solid target.		
4.2.6 Develop concept for beam dump within solenoid coils	?	
4.2.7 Remote dump: investigate the possibility to engineer the solenoid coils in such a way to let	SB (RAL)?	
the beam pass through a "gap" to reach a remote beam dump.		
a) Study heating of coils & shielding due to disrupted beam	?	
4.2.8 Investigate factors affecting the (huge) inter-coil forces, and how to reduce/handle these.	PL (RAL)	No
4.2.9 Estimate active volume of system and cost implications for TS shielding	?	
4.2.10 Investigate remote handling concepts and cost implications	RE	Started?

4.3	Alternative target technologies (II) flowing tungsten powder		
4.3.1	Agreed comparison of pion capture efficiency for reduced density powdered target with	JB (Warwick)	
	sed system including accelerator and target geometry.		
4.3.1	Carry out tungsten powder handling and erosion tests using RAL test plant.	CJD, OC, PL	Ongoing
4.3.2	Develop concepts for integration with capture solenoid, proton beam entry and exit	CJD, OC, PL	Ongoing
	windows of (i) open powder jet and (ii) contained powder jet		
4.3.3	Develop and investigate concept for beam dump – stopping target?	CJD, OC, PL, JB	Starting?
4.3.4	Investigate concept for remote beam dump involving gap in capture/decay solenoid	CJD, OC, PL, TD, SB (RAL)	Remove?
	system	GS (Sheffield), JB	
		(Warwick)	
4.3.5	Develop concept for complete powder target recirculation system	CJD, OC, PL (RAL)	
4.3.6	Estimate active volume of system and cost implications for TS shielding	CJD, OC, PL (RAL)	
4.3.7	Investigate remote handling concepts and cost implications	CJD, OC, PL (RAL)	
4.3.8	Powder jet density measurements	CJD, OC (RAL), GS	
		(Sheffield)	
4.3.9	On-line shock test of tungsten powder in helium at CERN?	CJD, IE	

Glossary of contributors

- AL Andrea Longhin (CEA Saclay)
- CJD Chris Densham (RAL)
- MR Matt Rooney (RAL)
- MDF Mike Fitton (RAL)
- NM Nikolai Mokhov (FNAL)
- GC ? (CERN)
- HK Harold Kirk (BNL)
- KM Kirk MacDonald (Princeton)
- SB Steven Brooks (RAL)
- JB John Back (Warwick)
- GS Goran Skoro (Sheffield)
- RS Roman Samulyak (FNAL)
- RE Rob Edgecock (RAL)
- VG Van Graves (ORNL)
- OC Otto Caretta (RAL)
- PL Peter Loveridge (RAL)
- TD Tristan Davenne (RAL)
- JRJB Roger Bennett (RAL)
- IE Ilias Efthymiopoulos (CERN)

Selection criteria for choice of target technology for a Neutrino Factory and a Superbeam

	Criteria	Driving factors	Inputs & Issues	Inputs & Issues
--	----------	-----------------	-----------------	-----------------

				(Nu	fact)	(Su	perbeam)
1.	Performance (I) Pion production and capture efficiency	i. ii.	Material Z Beam-target interaction geometry	High Z favoured		Target diameter and performance as function of material Z	
2.	Performance (II) Proton beam parameter limits (energy, power, pulse structure)			para	line accelerator meters W, 10±5 GeV	parat SPL	eline accelerator meters : 4 MW, 3-5 GeV N PS2: ? MW, 30- eV
3.	Performance (III) Engineering practicality, reliability	i. ii. iv. v. v. vi.	Integration with capture system Integration with beam window Integration with Beam Dump Time to repair/replace target system, Remote Handling complexity Maintenance intervals Failure scenarios & consequences of target failure	i. ii.	Integration with capture solenoid Near or far dump?	i. ii.	Magnetic horn outline design geometry & target location Far dump?
4.	Cost	i.	Target system active volume – civil engineering,		l cost models: SNS, 5 costs		l cost models: costs

5.	R&D requirements	ii. iii. iv.	shielding and building costs Remote handling complexity Target replacement and disposal cost Target replacement and disposal frequency Feasibility, reliability		MERIT@ORNL	
5.	(I) Off-line	1. ii.	Time and investment	1. ii. iii.	RAL shock tests RAL powder jet plant	
6.	R&D requirements (II) On-line	i. ii. iii.	beam interactions with materials radiation damage radiochemistry	facili SPS AP-0	to use existing ties: MERIT data, @CERN? @FNAL? JSNS, BNL	Need to use existing facilities: T2K, BNL, SPS@CERN? AP-0@FNAL?
7.	Regulatory, safety, environmental issues	i. ii.	Liquid metal, solid, powder Site		, J-SNS, Eurisol rience	SNS, J-SNS, Eurisol experience

2 Basis of Cost Estimate

In order to achieve the stated requirement of a cost estimate to 50-75%, it will be necessary to:

1. Determine the scope of the costing and division of responsibilities with the rest of the facility, e.g.

- a. Scope: build only; build and operate; or build, operate and decommission
- b. Required lifetime of facility (20 years?)
- c. Envelope definitions with proton driver and muon front end
- d. Level of detail required for civil engineering specifications etc
- e. Regulatory issues and costs site specific
- 2. State basis of estimate with reference to above scope
 - a. statement of assumptions, effect of location, existing infrastructure etc.
 - b. use of previous studies and facility costs e.g. SNS, J-SNS
- 3. Determine cost model
 - a. Pricing model for civil engineering, building, materials, construction, installation and commissioning
 - b. Shared infrastructure costs
 - c. Costing of institute staff
- 4. Assess uncertainties, contingency
 - a. Technical risks and cost implications
- 5. Cost implications for alternative target and beam dump technologies