

Optimized Target Parameters and Meson Production by IDS120h with Focused Gaussian Beam and Fixed Emittance (Update)

X. Ding, UCLA

Target Studies June 26, 2012

Focused Incident Proton Beam at 8 GeV

(Beam radius is fixed at 0.12 cm at z=-37.5 cm)

6/26/12

Focused Incident Proton Beam at 8 GeV (Cont'd) (Beam radius is fixed at 0.12 cm at z=-37.5 cm)

Gaussian distribution (Probability density)

• In two dimensional phase space (u,v):

$$w(u,v) = \frac{1}{2\pi\sigma^2} \exp(-\frac{u^2 + v^2}{2\sigma^2})$$

where u-transverse coordinate (either x or y), $v = \alpha u + \beta u'$

 $\alpha,\,\beta$ are the Courant-Snyder parameters at the given point along the reference trajectory.

```
In polar coordinates (r, \theta):

u = r \cos\theta  v = r \sin\theta

u' = (v-\alpha u)/\beta = (r \sin\theta - \alpha u)/\beta
```

Distribution function method

$$\theta = 2\pi\xi_1, \qquad \theta \in [0, 2\pi]$$
$$r = \sqrt{-2\sigma^2 \ln \xi_2}, \quad r \in [0, \infty]$$

Random number generator:

 $\Theta = 2\pi^* rndm(-1)$ R = sqrt(-2*log(rndm(-1))*\sigma

Gaussian distribution (Fraction of particles)

The fraction of particles that have their motion contained in a circle of radius
 "a" (emittance ε = π a²/β) is

$$F_{Gauss} = \int_{0}^{a} \frac{1}{\sigma^{2}} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr = 1 - e^{-\frac{a^{2}}{2\sigma^{2}}}$$

Fraction of particles

k=a/σ	ε _{Kσ}	F _{Gauss}
1	π (σ)²/β	39.5%
2	π (2σ)²/β	86.4%
2.5	$π$ (2.5 σ) ² / $β$ or ~ 6 $π \sigma$ ² / $β$	95.6%

Normalized emittance: $(\beta \gamma) \varepsilon_{K\sigma}$

Focused beam

• Intersection point (z=-37.5 cm):

 $\alpha^*=0, \beta^*, \sigma^*$

• Launching point (z=-200 cm):

$$\alpha = L/\beta^*$$

$$\beta = \beta^* + L^2/\beta^*$$

$$\sigma = \sigma^* \operatorname{sqrt}(1+L^2/\beta^{*2})$$

These relations strictly true only for zero magnetic field.

Setting of simple Gaussian distribution

- INIT card in MARS.INP (MARS code) INIT XINI YINI ZINI DXIN DYIN DZIN WINIT
- XINI = x0 DXIN = dcx0
- YINI = y0 DYIN = dcy0
- $ZINI = zO \qquad DZIN = dczO = sqrt(1-dcxO^2-dcyO^2)$

(Initial starting point and direction cosines of the incident beam)

Setting with focused beam trajectories

 Modeled by the user subroutine BEG1 in m1510.f of MARS code

$$\begin{array}{ll} x_v \text{ or } x_h \text{ (transverse coordinate: u);} \\ x'_v \text{ or } x'_h \text{ (deflection angle: u')} \\ XINI = x_0 + x_h & DXIN = dcx_0 + x'_h \\ YINI = y_0 + x_v & DYIN = dcy_0 + x'_v \\ ZINI = z_0 & DZIN = sqrt(1-DXIN^2-DYIN^2) \end{array}$$

Optimization of target parameters

- Fixed beam emittance ($\epsilon_{K\sigma}$) to $\pi (\sigma)^2/\beta$
- Optimization method in each cycle

 (Vary beam radius or beam radius σ^{*}, while vary the β^{*} at the same time to fix the beam emittance; Vary beam/jet crossing angle;
 Rotate beam and jet at the same time)
 We also optimized the beam radius and target
 - radius separately (not fixed to each other).

Optimized Target Parameters and Meson Productions at 8 GeV

(Linear emittance is fixed to be 4.9 μ m)

	Radius (cm)	Beam/jet crossing angle (mrad)	Beam angle/Jet angle (mrad)
Initial	0.404 (target)	20.6	117/137.6
1 st Run	0.525 (target)	25	120/145
Old 2 nd Run (vary target radius and beam radius is fixed to be 0.3 of target radius)	0.544 (target)	25.4	120/145.4
New 2 nd Run (vary beam radius with fixed target radius of 0.525 cm; vary target radius with fixed beam radius of 0.15	Beam radius: 0.15 Target radius: 0.548	26.5	127/153.5

Optimize beam radius and target radius separately

(Linear emittance is fixed to be 4.9 μ m)

We found almost no improvement in optimized meson production if the beam radius is not fixed at 30% of target radius and optimized separately!

Optimized Meson Productions at 8 GeV

(Linear emittance is fixed to be 5 μm)

Gaussian Distribution	Meson Production
Simple (0.404cm/20.6mrad/117mrad)	32563
Focused beam (0.404cm/20.6mrad/117mrad)	27489 (-15.6% less than Simple)
Focused beam with fixed Emittance at 5 μm (0.544cm/25.4mrad/120mrad)	30025 (-8.9% less than Simple) (8.4% more than Focused beam)
Focused beam with fixed Emittance at 5 μm (0.15 cm (beam)/0.54cm(target)/ 26.5mrad(crossing)/127mrad(beam)	30187

Optimized Target Parameters and Meson Productions at 8 GeV

(Linear emittance is fixed to be 10 μm)

	Beam Radius (cm)	Target Radius (cm)	Beam/jet crossing angle (mrad)	Jet angle (mrad)
Initial	0.404*0.3	0.404	20.6	137.6
1 st Run	0.2325	0.60	29	153
2 nd Run	0.2325	0.65	32	167

Gaussian Distribution	Meson Production
Focused beam with fixed Emittance at 10 μm (0.2325 cm (beam)/0.65cm(target)/ 32mrad(crossing)/135mrad(beam)	27641 (-16% less than Simple)

Angular Momentum Issue

Step 1 (w/t angular momentum):

- Create a beam (simple Gaussian or focused) with target radius of 0.404 cm, beam angle of 117 mrad and jet angle of 137.6 mrad at z=-37.5 cm.
- Track back the beam to z=-200 cm under the SC field and no HG Jet.
- Based on the backward beam at z=-200 cm, create the forward beam at z=-200 cm.
- Read the forward beam and run MARS15.

Angular Momentum Issue (Cont'd)

 Meson production is 1.30141*10^5.
 (Old Method with single centroid particle track back and using Twiss formulae at z=-200 cm w/t SOL field, Meson production is 1.09957*10^5.)

Meson Productions

Formulae Related with Angular Momentum

q=1.6×10⁻¹⁹ (C), $c = 3 \times 10^8 (m/s)$ 1 (GeV) = $(10^9 \times 1.6 \times 10^{-19}) (J) = (10^9 \times q) (J)$ 1 (J) =1/(10⁹×q) (GeV)

```
\Delta Px = qBcy/2 (J)

\Delta Py = -qBcx/2 (J)

\Delta Px = Bcy/(2 \times 10^9) (GeV)

\Delta Py = -Bcx/(2 \times 10^9) (GeV)
```

Estimation of Angular Momentum Effect

• Proton Beam:

E0=0.938272 GeV

KE=8 GeV

ET=8.9382 GeV

P=(ET²-EO²)^{1/2}=8.8888 GeV

(x0,y0,Px,Py), without angular momentum
 (x0,y0,Px+ΔPx,Py+ΔPy), with angular momentum

Estimation of Angular Momentum Effect (Cont'd)

- Z = -300 cm, B ~ 5.68 T
 x0 ~ -8.002 cm = -0.08 m
 y0~16.617 cm = 0.16617 m
- $\Delta Px \approx 5.68 \times 3 \times 10^8 \times (0.16617) / (2 \times 10^9) \approx 0.142$ (GeV) $\Delta Py \approx -5.68 \times 3 \times 10^8 \times (-0.08) / (2 \times 10^9) \approx 0.068$ (GeV)
- $Pz = (P^2 (Px + \Delta Px)^2 (Py + \Delta Py)^2)^{1/2}$

Angular Momentum Issue

Step 2 (simulation with angular momentum):

(Under way)

BackUp

Courant-Snyder Invariant

Emittance (rms) and Twiss Parameters

$$\varepsilon_{rms,x} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

$$\alpha_x = -\frac{\langle xx' \rangle}{\varepsilon_{rms,x}}$$

$$\beta_x = \frac{\langle x^2 \rangle}{\varepsilon_{rms,x}}$$

$$\gamma_x = \frac{\langle x'^2 \rangle}{\varepsilon_{rms,x}}$$

$$\beta_x \gamma_x - \alpha_x^2 = 1$$

Effect of Solenoid Field

[Backtrack particles from z = -37.5 cm to z = -200 cm.] (Could then do calculation of α , β , σ at z = -200 cm, but didn't)

Effect of Solenoid Field

