

XVII International Workshop on Neutrino Factories and Future Neutrino Facilities

The European Spallation Source Neutrino Super Beam for CP Violation discovery

Marcos DRACOS

IPHC-IN2P3/CNRS Université de Strasbourg

August 14, 2015 M. Dracos IPHC/IN2P3-CNRS-UNISTRA

Rio, August 2015

Rio, August 2015

Having access to a powerful proton beam...

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- $>2.7 \times 10^{23}$ protons/year

conventional neutrino (super) beam

IPHC Institut Pluridisciplinaire STRASBOURG STRASBOURG STRASBOURG

alr	nost pure
ν_{μ}	beam

	positive		negative			
	$N_{ u}~(imes 10^{10})/{ m m}^2$	%	$N_{ u}~(imes 10^{10})/{ m m}^2$	%		
$ u_{\mu}$	396	97.9	11	1.6		
$\bar{ u}_{\mu}$	6.6	1.6	206	94.5		
ν_e	1.9	0.5	0.04	0.01		
$\bar{\nu}_e$	0.02	0.005	1.1	0.5		

at 100 km from the target and per year (in absence of oscillations)

Can we go to the 2nd oscillation maximum using our proton beam?

Yes, if we place our far detector at around 500 km from the neutrino source.

MEMPHYS Cherenkov detector (MEgaton Mass PHYSics studied by LAGUNA)

- Neutrino Oscillations (Super Beam, Beta Beam)
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN
- Supernovae "relics"
- Solar Neutrinos
- Atmospheric Neutrinos
 - 500 kt fiducial volume (~20xSuperK)
 - Readout: ~240k 8" PMTs
 - 30% optical coverage

2nd Oscillation max. coverage

Where to find all these protons?

European Spallation Source Linac

M. Dracos IPHC/DV2P3-CNRS-UNISTRA

Rio, August 200

ESS proton linac

- The ESS will be a copious source of spallation neutrons
- 5 MW average beam power
- 125 MW peak power
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons)
- 2.0 GeV protons (up to 3.5 GeV with linac upgrades)
- >2.7x10²³ p.o.t/year

Linac ready by 2023 (full power and energy)

How to add a neutrino facility?

- The neutron program must not be affected and if possible synergetic modifications
- Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μ s the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H⁻ source (instead of protons)
 - space charge problems to be solved
- ~300 MeV neutrinos
- Target station (studied in EUROv)
- Underground detector (studied in LAGUNA)
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS)

neutrino flux at 100 km (similar spectrum than for EU FP7 EUROv SPL SB)

Previous Expertise

65 M

Mitigation of high power effects

(4-Target/Horn system for EUROnu Super Beam)

Packed bed canister in symmetrical transverse flow configuration (titanium alloy spheres)

4-target/horn system to mitigate the high proton beam power (4 MW) and rate (50 Hz)

target inside the horn

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

Rio, August 2015

Helium Flow

IPHC

Institut Pluridisci

Energy Deposition from secondary particles, 3 horns, ESSvSB -1.6 MW/EUROnu -1.3 MW

Proton Beam Switchyard

Parameter

Proton kinetic energy (GeV)

Pulse intensity (mA)

Beam rigidity (Tm)

Avg beam power (MW)

Macro-pulse length (linac)

Pulse length (accu.) (µs)

Pulse repetition rate (Hz)

Particle

(ms)

- Update of the switchyard preliminarily designed for EUROv with ESS beam parameters (config.1)
- Other possible layouts currently being studied (i.e config.2)

• Selection criteria: number of magnetic elements needed + type of operation	n (i.e. simple or bi-polar) +
prospective of beam dump requirements.	

Total length: **43.4 m** Max. B-field: 0.65 T (25 kA turns / pole) Dipole length: 2 m

Total length: **72.2 m** Max. B-field: 0.73 T (29 kA turns / pole) Dipole length: 2 m

ESSvSB

H-

2.5

5

62.5

11.02

0.715

1.5

70

EUROV

H-

4.5

40

4

17.85

2.86

1.5

50

Proton Beam Switchyard

> IPAC'15 Proceedings: E. Bouquerel, "Design Status of the ESSnuSB Switchyard", MOPWA017 Rio, August 2015 M. Dracos IPHC/IN2P3-CNRS-UNISTRA

ESSvSB layout

(adopted from EUROnu Super Beam, inspired by J-PARC (T2K))

Possible Layout

Drift-space between quads before dogleg ~ 6.6 m

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

(start of a quad package) DRIFT 256.2 50 0 QUAD 410 4.61286 50 0 0 0 0 0 DRIFT 600 50 0 QUAD 410 -4.61286 50 0 0 0 0 0 DRIFT 256.2 50 0 (end of a quad package)

(start of the drift space) DRIFT 1646.9 50 0 DRIFT 1646.9 50 0 DRIFT 1646.9 50 0 DRIFT 1646.9 50 0

The ESSnuSB Accumulator

Parameter	Value			
Circumference	376 m			
Number of dipoles	64			
Number of quadrupoles	84			
Bending radius	14.6 m			
Injection region	12.5 m			
Revolution time	$1.32 \ \mu s$			

Summary of Lattice Parameters for the Accumulator

- 376 m long ring as one of the possible layout
- Stripping foil injection: Temperature of the foils currently under studies

IPHC Institut Pluridisciplinaire STRASBOURG BROSSIBLE LOCATIONS for far detector

Which baseline?

- Zinkgruvan is better for 2 GeV
- Garpenberg is better for > 2.5 GeV
- systematic errors: 5%/10% Rio, Au**(signal/backg.)**

- Zinkgruvan is better
- atmospheric neutrinos are needed M. Dracos IPHC/IN2P3-CNRS-UNIS (at least at low energy)

ESS Neutrino Super Beam DS

Available online at www.sciencedirect.com

ScienceDirect

NUCLEAR PHYSICS

Nuclear Physics B 885 (2014) 127-149

www.elsevier.com/locate/nuclphysb

arXiv:1212.5048 arXiv:1309.7022

A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac

E. Baussan^m, M. Blennow¹, M. Bogomilov^k, E. Bouquerel^m,
O. Caretta^c, J. Cederkäll^f, P. Christiansen^f, P. Coloma^b, P. Cupial^e,
H. Danared^g, T. Davenne^c, C. Densham^c, M. Dracos^{m,*}, T. Ekelöf^{n,*},
M. Eshraqi^g, E. Fernandez Martinez^h, G. Gaudiot^m, R. Hall-Wilton^g,
J.-P. Koutchouk^{n,d}, M. Lindroos^g, P. Loveridge^c, R. Matev^k,
D. McGinnis^g, M. Mezzetto^j, R. Miyamoto^g, L. Moscaⁱ, T. Ohlsson¹,
H. Öhmanⁿ, F. Osswald^m, S. Peggs^g, P. Poussot^m, R. Ruberⁿ, J.Y. Tang^a,
R. Tsenov^k, G. Vankova-Kirilova^k, N. Vassilopoulos^m, D. Wilcox^c,
E. Wildner^d, J. Wurtz^m

^a Institute of High Energy Physics, CAS, Beijing 100049, China ^b Center for Neutrino Physics, Virginia Tech, Blacksburg, VA 24061, USA ^c STFC Rutherford Appleton Laboratory, OX11 0QX Didcot, UK ^d CERN, CH-1211 Geneva 23, Switzerland ^e AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland ^f Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden g European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden ^h Dpto. de Física Téorica and Instituto de Física Téorica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain ¹ Laboratoire Souterrain de Modane, F-73500 Modane, France ^j INFN Sezione di Padova, 35131 Padova, Italv ^k Department of Atomic Physics, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria ¹ Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden ^m IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France ⁿ Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

14 participating institutes from 10 different countries, among them ESS and CERN

Muon at the level of the beam dump

2.7x10²³ p.o.t/year

- input beam for future 6D μ cooling experiments (for muon collider)
- good to measure neutrino x-sections (v_{μ}, v_{e}) around 200-300 MeV (low energy nuSTORM)

C ESS Neutrino Super Beam Design Study

- A H2020 Design Study has been submitted last September
 - 11 institutes (including ESS and CERN) from 8 European countries
 - Decision:
 - Overall score 13.5/15 (5/5 for Excellence)
 - not enough to be funded (only 15 MEUR for this call)
 - nevertheless, the evaluators recognise that ESSvSB answers one of the priorities defined in the European Strategy for Particle Physics.
- New funding sources are now investigated in order to continue this design study (probably re-apply to H2020 2016/2017 call).
- Some studies for H⁻ injection and accumulation ring are included in an approved EU project concerning High Brightness neutron facility.

ESS under construction

ESS Construction

accumulator

near detector

target station

February 2015

First proton beam by 2019Full power/energy by 2023

Rio, August 2015

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

ESS Construction

June 2015

ESS Construction June 2015

P3-CNRS-UNISTRA

Conclusion

- Significantly better CPV sensitivity at the 2nd oscillation maximum.
- The European Spallation Source Linac will be ready in less than 10 years (5 MW, 2 GeV proton beam by 2023)
- Neutrino Super Beam based on ESS linac is very promising.
- ESS will have enough protons to go to the 2nd oscillation maximum and increase its CPV sensitivity.
- CPV: 5 σ could be reached over 60% of δ_{CP} range (ESSvSB) with large potentiality.
 - · Large associated detectors have a rich astroparticle physics program.
- Full complementarity with a long baseline experiment on the 1st oscillation maximum using another detection technique (LAr?).
 - A Design Study is urgently needed.

Backup

Neutrino Oscillations with "large" θ_{13}

Rio, August 2015

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

DAR experiments (ESS/SNS)

Typical expected supernova neutrino spectrum for different flavours (solid lines) and SNS/ESS neutrino spectrum (dashed and dotted lines)

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

IPHC Institut Pluridisciplinaire Huber CURIER Neutrino Oscillations with "large" θ_{13}

- at the 1st oscillation max.: $A=0.3sin\delta_{CP}$
- at the 2nd oscillation max.: $A=0.75 \sin \delta_{CP}$

(see arXiv:1310.5992 and arXiv:0710.0554)

2nd oscillation maximum is better

Systematic errors

	SB		BB			NF			
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated		ed	correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated		ed	correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^{\star}$	3.5%	11%	—	3.5%	11%	_	_	—	—
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	—	2.7%	5.4%	_	_	_	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%	—	2.5%	5.1%	—	—	—	—
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

Phys. Rev. D 87 (2013) 3, 033004 [arXiv:1209.5973 [hep-ph]]

for ESSnuSB systematic errors see 1209.5973 [hep-ph] (lower limit "default" case, upper limit "optimistic" case)

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

FILE Effect of the unknown MH on CPV STRASBOURG Effect of the unknown MH on CPV performance

"default" case for systematics

small effect

practically no need to re-optimize when MH will be known

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

• arXiv:1310.4340 [hep-ex] Neutrino "snowmass" group conclusions Rio, August 2015 M. Dracos IPHC/IN2P3-CNRS-UNISTRA

 δ_{CP} coverage

systematic errors (nominal values): 5%/10% for signal/background

more than 50% δ_{CP} coverage using reasonable assumptions on systematic errors

M. Dracos IPHC/IN2P3-CNRS-UNISTRA

The MEMPHYS Detector (Proton decay)

(arXiv: hep-ex/0607026)

The MEMPHYS Detector (Supernova explosion)

