Performance and Operational Experience of the CNGS Facility

Edda GSCHWENDTNER, Dario AUTIERO, Karel CORNELIS, Ilias EFTHYMIOPOULOS, Alfredo FERRARI, Alberto GUGLIELMI, Ans PARDONS, Paola SALA Heinz VINCKE, Joerg WENNINGER (October 20, 2009)

Outline

- Introduction
- Layout and Main Parameters
- Operational Experience and Performance
- Summary

Introduction

CERN Neutrinos to Gran Sasso (CNGS)

long base-line appearance experiment:

- Produce muon neutrino beam at CERN
- Measure tau neutrinos in Gran Sasso, Italy (732km)
 - $\boldsymbol{\rightarrow} \nu_{\tau}$ interaction in the target produces a τ lepton
 - \rightarrow Identification of tau lepton by characteristic kink

2 detectors in Gran Sasso:

• OPERA

(1.2kton) emulsion target detector~146000 lead-emulsion bricks

• ICARUS

(600ton) liquid argon TPC

CNGS: Conventional Neutrino Beams

 \rightarrow Produce pions and Kaons to make neutrinos

p + C
$$\rightarrow$$
 (interactions) $\rightarrow \pi^+$, K⁺ \rightarrow (decay in flight) $\rightarrow \mu^+ + \nu_{\mu}$

CERN Neutrinos to Gran Sasso

CNGS Run 2008: 1.78⁻10¹⁹ pot

Run 2009 today: 2.53 10¹⁹ pot

Introduction

CNGS Proton Beam Parameters

CNGS Challenges

- High Intensity, High Energy Proton Beam (500kW, 400GeV/c)
 - Induced radioactivity
 - In components, shielding, fluids, etc...
 - Intervention on equipment 'impossible'
 - Remote handling by overhead crane
 - Replace broken equipment, no repair
 - Human intervention only after long 'cooling time'
 - Design of equipment: compromise
 - E.g. horn inner conductor: for neutrino yield: thin tube, for reliability: thick tube
- Intense Short Beam Pulses, Small Beam Spot

(up to 3.5×10^{13} per 10.5 μ s extraction, < 1 mm spot)

 Thermo mechanical shocks by energy deposition (designing target rods, thin windows, etc...)

→ Proton beam: Tuning, Interlocks!

→ most challenging zone: Target Chamber (target-horn-reflector)

CNGS Layout and Main Parameters

CNGS Primary Beam Line

100m extraction together with LHC, 620m long arc to bend towards Gran Sasso, 120m long focusing section

Magnet System:

- 73 MBG Dipoles
 - 1.7 T nominal field at 400 GeV/c
- 20 Quadrupole Magnets
 - Nominal gradient 40 T/m
- 12 Corrector Magnets

Beam Instrumentation:

- 23 Beam Position Monitors (Button Electrode BPMs)
 - recuperated from LEP
 - Last one is strip-line coupler pick-up operated in air
 - mechanically coupled to target
- 8 Beam profile monitors
 - Optical transition radiation monitors: 75 μ m carbon or 12 μ m titanium screens
- 2 Beam current transformers
- 18 Beam Loss monitors
 - SPS type N₂ filled ionization chambers

Primary Beam Line

CNGS Secondary Beam Line

Air cooled graphite target

- Target table movable horizontally/vertically for alignment
- Multiplicity detector: TBID, ionization chambers
- 2 horns (horn and reflector)
 - Water cooled, pulsed with 10ms half-sine wave pulse of up to 150/180kA, remote polarity change possible
- Decay pipe:
 - 1000m, diameter 2.45m, 1mbar vacuum, 3mm Ti entrance window, 50mm carbon steel water cooled exit window.
- Hadron absorber:
 - Absorbs 100kW of protons and other hadrons
- 2 muon monitor stations: muon fluxes and profiles

200 cm

CNGS Facility – Layout

13 graphite rods, each 10cm long,Ø = 5mm and/or 4mm2.7mm interaction length

Ten targets (+1 prototype) have been built. → Assembled in two magazines.

proton beam focus

CNGS Horn and Reflector

- 150kA/180kA, pulsed
- 7m long, inner conductor 1.8mm thick
- Designed for 2.10⁷ pulses
- Water cooling to evacuate 26kW
- 1 spare horn (no reflector yet)

Design features

- Water cooling circuit
 - In situ spare, easy switch
 - <<1mSv total dose after 1y beam, 1w stop
 - Remote water connection
- Remote handling & electrical connections
 - << 1mSv total dose after 1y beam, 1m stop</p>
- Remote and quick polarity change

Decay Tube

- steel pipe
- 1mbar
- 994m long
- 2.45m diameter, t=18mm, surrounded by 50cm concrete
- entrance window: 3mm Ti
- exit window: 50mm carbon steel, water cooled

CNGS Facility – Layout and Main Parameters

60cm

Muon Monitors

2 x 41 fixed monitors (lonization Chambers)
2 x 1 movable monitor

LHC type Beam Loss Monitors

- Stainless steel cylinder
- Al electrodes, 0.5cm separation
- N₂ gas filling

Muon Intensity: – Up to 8 10⁷ /cm²/10.5μs

270cm

1.25cm

Operational Experience and Performance

CNGS Timeline

2000-2005	Civil Engineering & Installation	CERN	
2006: 10 July-27 Oct	Beam Commissioning	CERN	
	Detector electronics commissioning	Gran Sasso	0.08 [.] 10 ¹⁹ pot
2006-2007: Shutdown	Reflector Water Leak Repair/Improvement	CERN	
2007: 17 Sept-20 Oct	Beam Commissioning at high intensity	CERN	0.08 [.] 10 ¹⁹ pot
	Detector commissioning with 60000 bricks	Gran Sasso	
2007-2008: Shutdown	Additional shielding and electronics re-arrangement	CERN	
	Finishing OPERA bricks	Gran Sasso	
2008: 18 June- 3 Nov	CNGS Physics Run		1.78 [.] 10 ¹⁹ pot
2009: 1 June-today	CNGS Physics Run		2.4 [.] 10 ¹⁹ pot

Edda Gschwendtner, CERN

FermiLab, 20 October 2009

2008: 18 June – 3 November 2008

- Excellent performance of the CNGS Facility
- CNGS modifications finished successfully
- Beam line equipment working well and stable
- \rightarrow 1.78·10¹⁹ protons on target

→ OPERA experiment:

- 10100 on-time events
- 1700 candidate interaction in bricks

2009: 28 May – 23 November 2009 → 16nd October 2009: 2.53·10¹⁹ protons on target

→ OPERA experiment:

- >15500 on-time events
- >2500 candidate interaction in bricks

Supercycle 2008

48s supercycle: North Area, 3 CNGS, 1LHC,1MD → 37.5% CNGS duty cycle

 \rightarrow 83% CNGS duty cycle

Supercycle 2009

46.8s supercycle: North Area, 4 CNGS, 1LHC → 51.3% CNGS duty cycle

CNGS Run 2008: 18 June- 03 Nov 2008

Edda Gschwendtner, CERN

FermiLab, 20 October 2009

2009 Protons on Target

Total POT expected 2009: 3.22E19

SPS Efficiencies for CNGS

Edda Gschwendtner, CERN

Total Protons on Target

Primary Beam

- Extraction interlock in LSS4 modified to accommodate the simultaneous operation of LHC and CNGS
 - Good performance, no incidents
- No extraction and transfer line losses
- Trajectory tolerance: 4mm, last monitors to +/-2mm and +/- 0.5mm (last 2 monitors)
 - Largest excursion just exceed 2mm
- Total trajectory drift over 2008 is ~1mm rms in each plane

Target Beam Position

- Excellent position stability; ~50 (100) μ m horiz(vert) over entire run.
- No active position feedback is necessary
 - 1-2 small steerings/week only

Horizontal and vertical beam position on the last BPM in front of the target

^{🙆 14:49:20 -} No such child: 1

Beam Stability seen on Muon Monitors

- Position stability of muon beam in pit 2 is ~2cm rms
- Beam position correlated to beam position on target.
 - Parallel displacement of primary beam on T40

Muon Monitors

Very sensitive to any beam changes !

- Offset of beam vs target at 0.05mm level Muon Profiles Pit 2 3 \rightarrow Centroid of horizontal profile pit2 2 1 0 → 5cm shift of muon profile centroid -1 ∼80µm parallel beam shift -2 E -4 -5 -6 -7 -8 0/29 0:57 029321 8
- Offset of target vs horn at 0.1mm level
 - Target table motorized
 - Horn and reflector tables not

Muon Profiles Pit 1

Beam Intensity

Typical transmission of the CNGS beam through the SPS cycle ~ 92%. Injection losses ~ 6%.

Edda Gschwendtner, CERN

Muon Detector Non-Linearity Puzzle

2007: observation: non-linear muon detector signal in horizontal profile of pit 1 (not in vertical profile, neither in profiles of pit 2)

Edda Gschwendtner, CERN

FermiLab, 20 October 2009

Muon Detector Non-Linearity Puzzle

Wire topology:

All detectors are connected to readout card via a 750m long twisted multi-wire cable.

- → Horizontal profile detectors are inside the multi-wire cable
- \rightarrow See different capacitances!

Remedy:

Increase capacitance of all wires to a fixed value:

→ adding 220nF capacitor between each wire and shielding.

2009

CNGS Polarity Puzzle

Sensitive to any beam change (e.g. offset of beam vs target at $50\mu m$ level)

 \rightarrow Online feedback on quality of neutrino beam

Observation of asymmetry in horizontal direction between

- Neutrino (focusing of mesons with positive charge)
- Anti-neutrino (focusing of mesons with negative charge)

33

CNGS Polarity Puzzle

Explanation: Earth magnetic field in 1km long decay tube!

- calculate B components in CNGS reference system
- Partially shielding of magnetic field due to decay tube steel
- \rightarrow Results in shifts of the observed magnitude
- → Measurements and simulations agree very well (absolute comparison within 5% in first muon pit)

Edda Gschwendtner, CERN

Muon Monitors: Measurements vs. Simulations

Edda Gschwendtner, CERN

Summary

- CNGS commissioned in 2006
- Successful modifications in the CNGS facility and completion of the OPERA Detector
- Physics run since 2008
 - 2008:
 - 1.78 10¹⁹ protons on target total
 - 2009:
 - Expect 3.2 10¹⁹ protons on target total
 - Today (16 October 2009): 2.53 10¹⁹ protons on target

→ Waiting for tau neutrino results!!

Additional Slides

CNGS Performance - Reminder

Examples:	effect on	<u>ν_τ cc ε</u>	events
		-	
horn off axis by 6mn	า	< 3%	
reflector off axis by 3	30mm	< 3%	
proton beam on targ off axis by 1mm	et	< 3%	
CNGS facility misalig by 0.5mrad (beam 3	gned 60m off)	< 3%	

From calculations:

- When ventilation vs. beam is such that temp. at flange = 66° C:
 - \rightarrow Window: Temp. <100°C & Stress <250MPa \rightarrow Safety factor 3 ensured.

From temperature measurements during operation (extrapolate):

- If temp. measured < 85°C

 \rightarrow Window: Temp. <150°C & Stress <300MPa \rightarrow Safety factor 2.5 ensured.

Courtesy of A. Pardons

FermiLab, 20 October 2009

Helium Tube Entrance Window Temperature

Operational Experience

CNGS Radiation Issues

CNGS: no surface building above CNGS target area

- \rightarrow many electronics in tunnel area
- During CNGS run 2007:
 - Failure in ventilation system installed in the CNGS tunnel area due to radiation effects in electronics (SEU due to high energy hadron fluence).
- modifications during shutdown 2007/08:
 - Move most of the electronics out of CNGS tunnel area
 - Create radiation safe area for electronics which needs to stay in CNGS
 - − Add shielding \rightarrow 53m³ concrete \rightarrow up to 6m³ thick shielding walls

Neutrino Parameter Status: July 2008 Review of Particle Physics

If flavor eigenstates and mass eigenstates are different (mixing) and if masses are different \rightarrow neutrino oscillation

Mass states:
$$|\nu_1\rangle$$
 $|\nu_2\rangle$ $|\nu_3\rangle$ Flavor states: $|\nu_e\rangle$ $|\nu_{\mu}\rangle$ $|\nu_{\tau}\rangle$ m_1, m_2, m_3 $\Delta m_{12} = m_2 - m_1$ $\Delta m_{23} = m_3 - m_2$

Mixing of the three neutrinos: unitary 3x3 matrix \rightarrow 4 parameters like the CKM matrix for Quarks. CP violating phase not yet accessible \rightarrow currently 3 mixing angles θ .

$$|\nu_{\alpha}\rangle = \sum_{n=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad \thicksim \qquad \left(\begin{array}{c} |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{array}\right) = \left(\begin{array}{c} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{array}\right) \left(\begin{array}{c} |\nu_{2}\rangle \\ |\nu_{3}\rangle \end{array}\right)$$
$$P_{\mu \to \tau} = \sin^{2}(2\theta_{23}) \sin^{2}\left(\frac{\Delta m_{23}^{2}L}{4E}\right)$$

 $\Delta m_{21}^2 = 8 \pm 0.3 \times 10^{-5} \text{ eV}^2 \qquad \Delta m_{21} = 9 \pm 0.17 \text{ meV} \qquad \text{solar and reactor Neutrinos}$ $\Delta m_{32}^2 = 2.5 \pm 0.5 \times 10^{-3} \text{ eV}^2 \qquad \Delta m_{32} = 50 \pm 5 \text{ meV} \qquad \text{Atmospheric and long Baseline}$

 $\sin^2 2\theta_{23} > 0.93 \rightarrow \theta_{23}$ =35.3 degrees compatible with max. mixing θ =45 degrees

Neutrinos

Weakly interacting leptons v_e, v_μ, v_τ , no charge

• Solar Neutrinos:

- 6.10^{14} neutrinos/s/m²
 - \rightarrow Every 100 years 1 neutrino interacts in human body
 - \rightarrow 10¹⁶ meter lead to stop half of these neutrinos
- Natural radioactivity from earth:
 - 6.10^{6} neutrinos/s/cm².
- ⁴⁰K in our body:
 - 3.4.108 neutrinos/day
- Cosmic neutrinos:
 - 330 neutrinos/cm³
- CNGS
 - Send ~10¹⁷ neutrinos/day to Gran Sasso

Introduction

Neutrino Introduction

 $\rightarrow \Delta m_{32}^2$... governs the v_{μ} to v_{τ} oscillation

$$P_{\mu \to \tau} = \sin^2(2\theta_{23}) \, \sin^2\left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

- \rightarrow Up to now: only measured by disappearance of muon neutrinos:
 - Produce muon neutrino beam, measure muon neutrino flux at near detector
 - Extrapolate muon neutrino flux to a far detector
 - Measure muon neutrino flux at far detector
 - Difference is interpreted as oscillation from muon neutrinos to undetected tau neutrinos

→ K2K, NuMI

→ CNGS (CERN Neutrinos to Gran Sasso):

long base-line appearance experiment:

- Produce muon neutrino beam at CERN
- Measure tau neutrinos in Gran Sasso, Italy (732km)
- → Very convincing verification of the neutrino oscillation

 $\rightarrow v_{\tau}$ interaction in the target produces a τ lepton \rightarrow Identification of tau lepton by characteristic kink 2 detectors in Gran Sasso:

- OPERA (1.2kton) emulsion target detector ~146000 lead-emulsion bricks
- ICARUS (600ton) liquid argon TPC

