

Displacement Damage and Gas Production Data for ESS Structural Materials

U. Fischer, A. Yu. Konobeyev, M. Majerle^(), P. Vladimirov, B. Weinhorst*

Karlsruhe Institute of Technology

(*) Nuclear Physics Institute, Rez, CR (permanent address)

Content

- Background
- Data evaluation methodology (KIT)
- Displacement damage and gas production crosssection data
- Fe, Cr, Ni & others for n & p induced reactions up to 3 GeV
- Application to ESS windowless liquid metal target

Conclusions

Background

- ESS target and structural materials subjected to intense neutron and proton irradiation
- Materials properties deteriorated due to displacement damages and gas generation
- Very few data available for materials and energy range relevant to ESS
- Evaluation effort at KIT for providing data of n & p induced reactions up to 3 GeV
- Focus on Fe, Cr & Ni

Displacement damage cross-section

$$\sigma_{d}(\mathsf{E}_{p}) = \sum_{i} \int_{\mathsf{E}_{d}}^{\mathsf{T}_{i}^{max}} \frac{d\sigma(\mathsf{E}_{p}, \mathsf{Z}_{T}, \mathsf{A}_{T}, \mathsf{Z}_{i}, \mathsf{A}_{i})}{d\mathsf{T}_{i}} \eta(\mathsf{T}) \mathsf{N}_{\mathsf{NRT}}(\mathsf{T}_{i}, \mathsf{Z}_{T}, \mathsf{A}_{T}, \mathsf{Z}_{i}, \mathsf{A}_{i}) d\mathsf{T}_{i}$$

 $d\sigma/dT$: recoil energy distribution

E_d : effective threshold displacement energy

Defect production efficiency
$$\eta(T) = \frac{N_D}{N_{NRT}}$$

 $N_D(T)$: number of Frenkel pairs produced by PKA (MD, BCA, experiment)

MD = Molecular Dynamics BCA = Binary Collision Approxaimation

NRT model

M.J.Norgett, M.T.Robinson, I.M.Torrens, Nucl. Eng. Des. 33 (1975), 50

Number of defects produced by PKA

$$N_{NRT}(T) = \frac{0.8}{2E_{d}} T_{dam}$$
T: PKA energy
$$T_{dam}(T) = \frac{T}{1 + k \left(3.4008 \epsilon^{1/6} + 0.40244 \epsilon^{3/4} + \epsilon\right)}$$

Available experimental data and MD simulations show pronounced differences with NRT predictions

Typical η (T) values: 0.5 (AI), 0.3 (Fe), 0.3 (Cu)

Defect production calculation – KIT approach

Combined BCA-MD approach for the calculation of the number of stable displacements in atom lattices

Transition from BCA to MD at "critical" kinetic energy (T_{crit})

Example: N_D/N_{NRT} for iron

Nucleon elastic scattering

Karlsruhe Institute of Technology

Non-elastic scattering

```
Different models & codes
MCNPX: INC+PE+EQ
          INC: Bertini, ISABEL, CEM03, INCL4
          EQ: Dresner, ABLA
CASCADE (JINR, KIT): INC+EQ
DISCA-C (KIT): INC(+clusters)+EQ
TALYS : PE (exciton model) +EQ (H-F)
HMS ALICE : Hybrid model +EQ
GNASH: PE (exciton model) +EQ (H-F)
```

Evaluated displacement cross-section :

$$\sigma_{\text{displ}} = \sum_{m=1}^{M} W_m \, \sigma_{\text{displ},m}$$

Non-elastic scattering (cont'd)

<u>Example</u>: Displacement cross-sections (b) for non elastic interactions of 0.6 GeV neutrons and protons with ⁵⁶Fe. Calculation of recoil spectra and displacement cross-sections using equally weighted models

Nuclear model	Neutrons	Protons
Bertini/Dresner	807	727
Bertini/ABLA	864	775
ISABEL/Dresner	815	732
ISABEL/ABLA	857	776
СЕМОЗ	781	712
INCL4/Dresner	956	849
INCL4/ABLA	1002	894
CASCADE	796	717
DISCA-C	870	786
Average value	861 ± 75	774 ± 62

U. Fischer et al, Displacement Damage and Gas Production Data

4th HPTW, Malmö, Sweden, May 2-6, 2011 10

Evaluated Fe displacement damage cross-sections up to 3 GeV

Evaluated Cr displacement damage cross-sections up to 3 GeV

U. Fischer et al, Displacement Damage and Gas Production Data

4th HPTW, Malmö, Sweden, May 2-6, 2011 12

Proton-, deuteron-, triton, ³He-, ⁴He- production

Experimental data

EXFOR, JINR compilation (1972), and more

(p,x) reactions

Fe, Ni: 24 measurements Cr: K.Goebel et al, CERN (1964)

Data correction

Cutoff energy: Bertrand F.E., Peelle R.W. (1973) Spectrum: Herbach C.-M. et al (2006)

Calculations

ALICE/ASH (KIT) : GDH(+non-equilibrium cluster emission) +EQ TALYS (NRG): PE exciton model +EQ (H-F) DISCA-C (KIT): INC(+clusters)+EQ CASCADE (JINR, KIT): INC(+improved coalescence model) +EQ MCNPX models: for illustration purposes only

Evaluation ...

... comes later

MCNPX model calculations

Examples of available evaluations and model calculations

4th HPTW, Malmö, Sweden, May 2-6, 2011 17

More model calculations ...

19

KIT evaluated cross-section data

I. Theoretical data

ALICE/ASH, CASCADE

TALYS: up to several MeV

II: Experimental data

III. Evaluated data = final data

BEKED code system (KIT) Uncertainties & co-variance information Generalised Least Square Method (GLSM) + Unified Monte Carlo (UMC) of D. L. Smith.

U. Fischer et al, Displacement Damage and Gas Production Data

4th HPTW, Malmö, Sweden, May 2-6, 2011

KIT evaluated data files

- Neutron & proton data up to 3 GeV
- Fe, Cr, Ni + Al, Zr, Cu, W
- Data files in standard ENDF-6 format
- Gas production cross-sections for p-, d-, t-, ³He, ⁴He (MT=203-207)
- Displacement cross-sections for BCA-MD (MT=900) and NRT (MT=901)
- Data files can be processed into ACE format for direct use with MCNPX^(*)

^(*) *p* data require patch or secondary input

Windowless Liquid Metal Target Design for ESS

See A. Class et al, Windowless liquid metal target concept for ESS, this workshop

- Proton beams impinges liquid metal at 15° inclination angle
- No direct interaction of proton beam and solid structures
- Radiation damage to structure walls due to neutron irradiation

Neutronics calculations

- MCNPX, Version 2.7a, using CEM cascade model
- Source: Proton beam E_p=2500 MeV with Gaussian profile incident at 15° on PbBi free surface target
- Geometry model: PbBi enclosed in SS-316 steel frame
- Calculations of n-, p-flux, heating, dpa, gas production distributions using mesh tallies
- Use of evaluated dpa & gas production cross-section data for dpa and gas production rates in SS-316
- Typically 10 million source particle histories tracked with fractional standard deviation (FSD) around 1 %.

^{4&}lt;sup>th</sup> HPTW, Malmö, Sweden, May 2-6, 2011 24

Neutronics results for target side wall (SS-316)

U. Fischer et al, Displacement Damage and Gas Production Data

4th HPTW, Malmö, Sweden, May 2-6, 2011 25

Neutronics results for bottom wall (SS-316)

Neutron flux density [cm⁻²s⁻¹]

Displacement damage [dpa/fpy]

U. Fischer et al, Displacement Damage and Gas Production Data

H production [appm/fpy]

He production [appm/fpy]

4th HPTW, Malmö, Sweden, May 2-6, 2011

Neutronics results for upper wall (SS-316)

Displacement damage [dpa/fpy]

U. Fischer et al, Displacement Damage and Gas Production Data

H production [appm/fpy] 11,0 ateral distance from target [cm] 5,5 H [appm fpy^{.'}] 0,0 -5,5 max. 10000 appm/fpy -11,0 10,0 0,0 2,5 5,0 7,5 12.5 15,0 17,5 axial distance from target [cm]

He production [appm/fpy]

Conclusions

- Evaluations performed for displacement and gas production data using advanced KIT approach
- Data for Fe, Cr, Ni (+Al, Zr, Cu, W), n and p induced reactions up to 3 GeV
- ENDF data files available upon request
- Application analyses for ESS windowless liquid metal target
- Data can be used with MCNP/MCNPX
 ... and other codes