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IDS-NF objectives

Deliver by 2012/2013 a Reference Design Report including:

Physics performance of the Neutrino Factory
Accelerator specification

Detector systems

Schedule for implementation of the Neutrino Factory
Costing of the facility

Technical uncertainties/risk documented and mitigation plans
presented

Overlap/synergies of the IDS-NF Accelerator study with EUROnu
WP3 (front-end - acceleration) & WP2 (target integration).
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Neutrino Factory goals

Deliver 10* neutrinos/year (1 year = 10’ s) coming from the
decay of a 25 GeV muon beam, toward detectors located at 3000-
5000 km and 7000-8000 km.

Muons are produced by the decay of pions coming from the
interaction of a high intensity (4 MW) proton beam on target.

Bunching/rotation & cooling of the muons into a suitable beam
for further acceleration.

IDS-NF baseline specifications established following the
recommendation of the International Scoping Study (ISS) for a
future Neutrino Factory and Super-Beam facility (2006). ,



Proton Driver specifications

Number of muons produced ~ to the proton driver power P:
P=E-Nb-Np-q-f=E-N-q-f

E = proton energy
N, = number of bunches - NP = number of protons/bunch

N = number of protons/pulse
f = repetition rate

q = proton charge

Need to optimize:

= the repetition rate (low rate increases charge per bunch, high rate increase RF
wall power demand)

= the number of particles per bunch

= the energy (higher energy costs more) 8



Proton Driver other considerations

Bunch length:

= Muon capture better with short bunches.
= Multiple bunches per repetition, so better use short bunches.
= Short bunch harder at low energy.

Space charge:
= Proton beam more stable against space-charge effect at higher energy.
= Minimum repetition rate limited by space charge effect.
= Need optimum number of bunch per repetition.

Muon production simulations:

= Decline in the production peak per power at low & high energy. :



Proton Driver parameters

Pulses per second

Minimum time between bunches 17 us

RMS proton bunch length 1-3 ns

FFAG/synchrotron option

@

[Talk by J. Thomason]

20 ms

Linac option

O

[Talk by M. Dracos]
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Linac-based proton Driver

CERN Super Proton Linac (SPL) + accumulator & compressor rings:

Accumilator
[ 1] [ ] Accumulation Duration "0 s gape]
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1920 batches =3 batches x 640 turn Example with 6 bunches

640 turns in accumulator. 36 turns in compressor for bunch rotation.
Bunches spaced by 12 ys at ejection. 11



Linac-based proton Driver

Project X design criteria: N W
20 mA x 1.25 msec x 2.5 Hz Te]_cii:lce; i
2 MW of beam power over the range 60-120 GeV. ——

Compatibility with future upgrades to 2-4 MW at 8 GeV. i o s

Initial Configuration 1 (IC1) option: 120 Gev i exncion &
Simultaneous with > 150 kW of beam power at 8 GeV. 1 o sogemtr 1

Need upgrade to ~ 4 MW.
Initial Configuration 2 (IC2) option:

1 0 CW | mA 2 GeV Linac . SW,E Halls
Simultaneous with 2 MW beam power at 2 GeV. —<PMH_ Ny rerl o e Syrcraron

.3 msec I/& Recyeler Circumference
Linac as to be augmented either by

21 Ga¥ CW protons
2 MW

340 KWV 10 Hz

p Transier
ac B GeV

1 :qﬁfésh;uhdﬁll
= a pulsed H- linac + RCS
B GeV fast spill
= a pulsed linac from 2 to 8 GeV directly -l
In addition need multi-GeV: 6 10 prereni 4 e o o
IC2 o

= accumulator ring

= buncher ring 12



Target systems

Muon production as function of the target material:

= MC: low-Z material favoured at low energy & high-Z material less
dependent on energy

= HARP data: cross-section increases linearly with energy below 10 GeV/c
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Target systems

Target damage from proton beam:

= Liquid Hg jet target is the baseline
Jet angle to axis 100 mrad

Proton beam angle to axis 67 mrad

= Solid (Tungsten bars) target under study

— Mercury
Proton e ' Pool

Mercury Jet
Water-cooled

Tungsten Shield [Talk by R. Edgecock] ”

Splash
Mitigator

Resistive
Magnets

Iron Plug



Liquid Hg jet target

R&D/PoP: MERcury Intense Target (MERIT) experiment at the CERN PS.

30x10" protons, 15 T field.

2004 proposal submitted.

I--_:-__—

2006 cryo & Hg safety review.
2007 data taking.
2008 dismantling.

Success in validating the target concept for 4
MW, 50 Hz operation.

Need to develop a full target system than will
support 4 MW.

15



Muon Front-End

Drift: ~100 m channel to allow for pions to decay
and time-energy correlation to develop.

Bunching: Beam is sliced in short alternating-sign
muons bunches, using RF with decreasing
frequencies 333-234 MHz and increasing gradient
5-10 MV/m.

Rotation: RF with decreasing frequencies 232-201
MHz and constant 12.5 MV/m gradient reduce the
particle energy spread inside the bunch train.

Cooling: 1 cm LiH absorbers windows allow muon
momentum reduction (through ionization cooling)
where 201 MHz with 15.25 MV/m RF cavities
restore the longitudinal momentum only.

Delivers muons in AD = 30 mm & A/ = 150 mm.

R&D/PoP of cooling:
MICE [Talk by M. Zisman].
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Muon front-end

Revision to baseline [Talk by C. Rogers]:

Solenoid field tapering from 20 T to 1.5 T (was 1.75 T).
Shorter baseline, similar performance.

Experiments have shown that the peak gradient achievable in presence of magnetic
field may be limited and will not meet the baseline requirements.
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= Shielded lattice [Talk by C. Rogers]
= Magnetically insulated lattice (D. Stratakis)
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Hybrid high-pressure gas-filled cavities (M. Zisman & J. Gallardo)



Magnetically insulated lattice

Idea:

The emitted electrons are focussed by B-field and accelerated by E-field, this results
in significant energy deposition in small area leading to thermal stressing and

material fatigue.

If we keep E perpendicular to B, the electrons are redirected to cavity surface

without acceleration or focussing.
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R&D:

Hybrid HP gas-filled cavities

= High-pressure gas filled cavities seem to sustain magnetic field without
breakdown.

= Need a demonstration with high intensity beam (foreseen at the end of the year).
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Other designs

Lower frequency (44-88 MHz) lattice:

single muon sign, one bunch-to-bucket lattice.

performance being re-evaluated in more recent code.

rf characteristics

drift rotator cooling L acceleration cooling TT

0 30 60 104 148 196 m g g”r : ::gm
R/Q 144 Q
Filling time 159 us
Ppgak 2.04 MW/cavity
. o o Pyean (50 Hz) 81 kW/m
Longitudinal cooling: )X
- Helical SFOFO (K. Yonehara) Fig. 5.10: Sketch of an 88 MHz cavity with solenoid

Isochronous Helical Transport Channel (C. Yoshikawa)
Titled RFOFO (Y. Alexahin)

Guggenheim channel (R. Fernow, B. Palmer, P. Snopok) 20




Acceleration & Storage rings

Linac:
= Acceleration of muons from 244 MeV to 0.9 GeV.
= Only one pass, works all energies.
Dogbone Recirculating Linear Accelerators (RLA):
= Acceleration of muons to 3.6 GeV (RLA 1) and 12.6 GeV (RLA 2)
= Passes through RF limited by switchyard
Fixed Field Alternating Gradient (FFAG) rings:
= Acceleration of muons to 25 GeV
= No switchyard allowing for 8-16 passes
Storage rings:

= Two racetracks straight angled downward to far detectors

[Talk by C. Rogers]
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Conclusion

In preparation for the RDR:

= Proton driver developments according to three designs based on upgrade of
existing (ISIS) or to be built (ProjectX, CERN-SPL) machines.

= Front-end study pursuing in parallel
optimisation study of the baseline and
few mitigating options.

= Acceleration systems performance

NAARNR
being adressed through the end-to-end

| EMMA |
Simulations. 111

International Design Study

Neutrino Factory project

’ Interim Design Report

0 Reference Design Report
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