HPT Workshop Summary for MAP 2014 Spring Workshop Patrick Hurh, Fermilab, May 29, 2014

5th High Power Targetry Workshop

Fermilab, Batavia, Illinois - USA, May 20th - 23rd, 2014

indico.fnal.gov/event/HPT14

The High Power Targetry (HPT) Workshop series brings together interested scientists and engineers from the international community, in particular those operating or designing high power targets.

TOPICS

Target Design Challenges Radiation Damage and Material Limits Target Facility Simulation Challenges Target/Beam Monitoring & Instrumentation Target Facility Challenges

Program Committee

Chair: Harold Kirk (BNL) Chris Densham (RAL) Katsuhiro Haga (J-PARC) Patrick Hurh (FNAL) Jerry Nolen (ANL) Kirk McDonald (Princeton) Nikolai Mokhov (FNAL) François Plewinski (ESS) Bernie Riemer (ORNL) Thierry Stora (CERN) Helmut Weick (GSI)

Michael Wohlmuther (PSI)

Local Organizing Committee

Chair: Patrick Hurh Kavin Ammigan Brian Hartsell Cynthia Sazama Suzanne Weber Robert Zwaska

Successful Workshop!

Thanks to:

- The Program Committee
- The Local Organizing Committee
 - Brian Hartsell
 - Kavin Ammigan
 - Bob Zwaska
- Fermilab
 - Conference Office
 - Cynthia Sazama
 - Suzanne Weber
 - Melody Saperston

Targetry: A Vital Cog of the Accelerator Machine

- Recently major accelerator facilities have been limited in beam power not by their accelerators, but by their target facilities
 - "When things go wrong, they can really go wrong" Me
 - "The SNS accelerator power is restricted today by the targets" M. A. Plum, IPAC'13
 - "When you have no spare, you must repair" J. Hylen, NuMI-MINOS, 2009

High Power Targetry Scope

- Target
 - Solid, Liquid, Rotating, Rastered
- Other production devices:
 - Collection optics (horns, solenoids)
 - Monitors & Instrumentation (high radiation/temperature)
 - Primary Beam window
 - Absorbers/Collimators

- Facility Operations:
 - Remote Handling
 - Shielding & Radiation Transport
 - Air Handling
 - Cooling Systems
 - Waste stream

Focus Sessions

- Target Design Challenges
 - C. Densham, B. Riemer
- Radiation Damage and Material Limits
 - Y. J. Lee, S. Maloy
- Target Facility Simulation Challenges
 - O. Caretta, N. Mokhov
- Target/Beam Monitoring & Instrumentation
 - T. Shea, K. Thomsen
- Target Facility Challenges
 - K. Haga, R. Losito
- 1. Some talks and posters interesting to MAP
- 2. Summary of Conclusions and Future Directions

Survey of Target Facility Landscape: Neutrino Beam Facilities

5th High Power Targetry Workshop Jim Hylen / Fermilab May 20, 2014

Operating Conventional Neutrino Beams

- BNB (FNAL)
- T2K (JPARC) beam power being upgraded 750 kW ~2017
- NUMI (FNAL) beam power being upgraded 700 kW end of 2015

Proposed Conventional Neutrino Beams

- LBNE (FNAL) 2023/2024 has DOE CD-1 approval
- CFNF
- LBNO LAGUNA CN2PY
- ESSnuSB

Proposed not-so-conventional Neutrino Beams

- IsoDAR & DAEδALUS cyclotron, decay at rest
- NUSTORM neutrions from muon decay rather than pion decay
- Beta beams (neutrinos from decay of accelerated isotopes)

May 29 2014

P. Hurh

Target Design Challenges

	Target Design Challenges Kick-off Talk	Mr. Bernard RIEMER
	Wilson Hall - One West	13:10 - 13:20
	Target challenges for the next generation of neutrino facilities	Dr. ottone CARETTA
	Wilson Hall - One West	13:20 - 13:45
	Thermal, Mechanical and Fluid Flow Challenges of the FRIB Primary Beam Dump*	Dr. Mikhail AVILOV
14:00	Wilson Hall - One West	13:45 - 14:10
	Design, optimisation and operation of beam intercepting devices for CERN's fixed-target physics	Dr. Marco CALVIANI
	Wilson Hall - One West	14:10 - 14:35
	Discussion	
15:00	Wilson Hall - One West	14:35 - 15:10
	Break	
	Wilson Hall - Atrium	15:10 - 15:30
	Thermo-Mechanical Analysis of ISIS TS2 Spallation Target	Mr. Dan WILCOX
	Wilson Hall - One West	15:30 - 15:55
16:00	Study of a new high power spallation target concept	Dr. Yong Joong LEE
	Wilson Hall - One West	15:55 - 16:20
	High Power Targets and Performance Optimization versus costs or How much shall one pay for a useful neutron?	Dr. Franz GALLMEIER 🗎
		Dr. Franz GALLMEIER 🖺
17:00	a useful neutron?	Dr. Franz GALLMEIER 🖹

HEAT REMOVAL AND THERMAL STRESS SUMMARY

Neutron Economy at SNS

• 1.4 MW SNS produces: 2 ×10¹⁷ n/s

Thermal neutrons at beamline start: 2×10¹² n/s

Neutrons at sample position (white): 2×10¹¹ n/s

Neutrons at sample (chopped): 2×10¹⁰ n/s

Neutrons scattered: 2×10⁸ n/s

Neutrons counted: 5×10⁷ n/s

Neutron counted/Neutrons produced: 3×10⁻¹⁰

Is higher power best path to higher physics output?

Radiation Damage & Material Limits

08:00	RADIATION DAMAGE AND MATERIAL LIMIT: ILLUSTRATION OF A WAY TO CODIFY RULES WITH RCC-MRx CODE	Mrs. CECILE PETESCH
	Wilson Hall - One West	08:00 - 08:30
	Dose Limit Philosophies Implemented at the Spallation Neutron Source	Dr. David MCCLINTOCK 🗎
	Wilson Hall - One West	08:30 - 08:50
	Discussion-Design Limits	
09:00	Wilson Hall - One West	08:50 - 09:05
	Design and Development of a High Temperature Radiatively Cooled Tungsten Target for Mu	12e Dr. Chris DENSHAM
	Wilson Hall - One West	09:05 - 09:25
	HiRadMat at CERN SPS - A dedicated in-beam test facility	Dr. Adrian FABICH 📄
	Wilson Hall - One West	09:25 - 09:45
	Discussion: Design and Target Development	
	Wilson Hall - One West	09:45 - 09:55
10:00	Coffee Break	
	Wilson Hall - Atrium	09:55 - 10:10
	Irradiation damage on material for FRIB project	Dr. Frederique PELLEMOINE 📄
	Wilson Hall - One West	10:10 - 10:30
	Experimental investigation of beryllium: plans and current results within the RaDIATE collaboration	Dr. Viacheslav KUKSENKO
	Ion-irradiation induced degradation of thermo-mechanical properties of carbon-based mate	erials Dr. Marilena TOMUT
11:00	Wilson Hall - One West	10:50 - 11:10
	Mechanical Test Techniques for Small Specimens	Dr. Mychailo TOLOCZKO 🗎
	Wilson Hall - One West	11:10 - 11:30
	Post Irradiation Examination of an Alloy 718 Beam Window	Dr. Stuart MALOY
	•	

Target conceptual design

Tungsten Lifetime Test Samples

Radiation Damage Studies in Graphite Annealing of Damage at High Temperature (> 1300°C)

Pellemoine Talk (Weds 10:10)

Why use micro-cantilever testing?

- Useful where only small samples are available (implanted layer)
- Need for a sample design that can be machined in surface of bulk samples
- Geometry that can be manufactured quickly and reproducibly

Chris Hardie University of Oxford

0.3mm

Stress (Pa)

Kuksenko Talk (Weds 10:30) Strain

Radiation induced creep measurements on flexible graphite

Au, 4.8 MeV/u

Target Facility Simulation

	Magnetic horn design optimization for nuSTORM	Mr. Ao LIU 🗎
	Wilson Hall - Ramsey Auditorium	13:20 - 13:45
	Beam-Induced Effects in Targets and Uncertainties in their Modeling	Dr. Nikolai MOKHOV 🗎
14:00	Wilson Hall - Ramsey Auditorium	13:45 - 14:10
	Modified Moliere's Screening Parameter and its Impact on Calculation of Radiation Damage	Dr. Sergei STRIGANOV 🗎
	Wilson Hall - Ramsey Auditorium	14:10 - 14:35
	Discussion 1	Dr. Nikolai MOKHOV
15:00		
	Wilson Hall - Ramsey Auditorium	14:35 - 15:20
	Coffee Break	
	Wilson Hall - Atrium	15:20 - 15:40
	MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 – 120 GeV energy range	Dr. Vitaly PRONSKIKH
16:00	Towards the simulation of proton beam induced pressure waves in liquid metal using the Multiple Pressure Variables (MPV) approach	Ms. Jana R. FETZER 🗎
	LIEBE: Design of a molten metal target based on a Pb-Bi loop at CERN-ISOLDE.	Mrs. Melanie DELONCA
	Wilson Hall - Ramsey Auditorium	16:30 - 16:55
17:00	The development of new concept for CADS spallation target	Prof. Lei YANG 🗎
	Wilson Hall - Ramsey Auditorium	16:55 - 17:20
	Discussion 2	Otto CARETTA
	Wilson Hall - Ramsey Auditorium	17:20 - 17:40

Ao Liu (Fermilab, Indiana University): Horn Optimization for nuSTORM

- 1. nuSTORM benefits from the optimization:
 Expect 8.3% more neutrino flux, with a
 38 cm Inconel target;
 Expect 16% more flux, with a 46 cm
 Inconel target.
- 2. Other horn-based projects e.g. LBNE: Algorithm is expected to work if the objectives are known; Algorithm may be less complicated and faster, if no beamline tracking is needed; MOGA allows adding other constraints to obtain a more realistic design + optimization

A python-<u>mpi</u> code to run the Genetic Algorithm (GA), to improve the individuals

- Different individuals are different combinations of parameters
- They give different objective values
 - (Different horns yield different N_π and N_{μ,end})
- Objectives to be maximized / minimized
 - (Max. N_{π} and $N_{\mu,end}$)
- Parameter constraints;
- (Current in horn, neck P. Hurh radius, etc.)

- An individual horn is a combination of the above parameters, and horn the current (9 parameters);
 Select parents based on the objectives, produce offspring;
- Parameters are treated like "genes" genes of children are the crossover and mutation of the parents' genes;
- Eventually, the whole population will be improved, i.e. gives larger N_{π} and N_{uend} 18

Nikolai Mokhov (Fermilab):

Beam-Induced Effects in Targets and Uncertainties in Modeling

- 1. Thermal shocks and quasiinstantaneous damage
- Insulation property deterioration due to dose buildup
- 3. Radiation damage inorganic to materials due atomic to displacements (DPA) helium and production
- (impressive) Capabilities and 4. uncertainties (steadily decreasing) of modern simulation codes used to study these effects
- 5. Link of calculated quantities (DPA, dose, fluence etc.) to observable changes in critical properties of materials remains on the top of the wish-list. Mission impossible?

6. Discussion

Physical State

Target & Beam Instrumentation

08:00	Proton beam monitors at JSNS of J-PARC	Dr. Shin-ichiro MEIGO
	Wilson Hall - One West	08:00 - 08:30
	Instrumentation Discussion 1	
	Wilson Hall - One West	08:30 - 08:40
	Monitoring beam position at the NuMI target with a thermocouple system	Dr. James HYLEN 📋
	Wilson Hall - One West	08:40 - 09:00
09:00	The Radiochemical Detector	Dr. Bob ZWASKA 🗎
	Wilson Hall - One West	09:00 - 09:20
	Instrumentation Discussion 2 - Focus on New Techniques	Knud THOMSEN et al.
	Wilson Hall - One West	09:20 - 10:00
10:00	Coffee Break	
	Wilson Hall - Atrium	10:00 - 10:20
	Integrating Safety into the LIEBE Pb-Bi loop target at CERN-ISOLDE	Mrs. Ana-Paula BERNARDES 🗎
	Wilson Hall - One West	10:20 - 10:40
	VIMOS, New Experience with a Dedicated Optical Safety System	Dr. Knud THOMSEN 🗎
	Wilson Hall - One West	10:40 - 11:00
11:00	Experience with the SNS* Target Imaging System	Dr. Willem BLOKLAND
	Wilson Hall - One West	11:00 - 11:20
	Instrumentation Discussion 3 - Focus on Target Protection with Introduction by Tom She	a Thomas SHEA et al. 🗎
12:00		
	Wilson Hall - One West	11:20 - 12:20

Thermocouple Device at NuMI

- New device to monitor proton beam position on NuMI target
- Beryllium rods and thermocouples demonstrated ability to monitor beam position to better than 0.1 mm accuracy
- Simple, robust device that many attendees could see during the tour.

Hylen Talk (Thurs 08:40)

Imaging Solution at PSI

Issue transporting short wavelengths in fiber bundle

- Diagnostics' short-wavelength camera removed, but Filter left in place.
- IR Signal with reduced short-wavelength contamination alone serves as basis for diagnostics
- Increased sensitivity for lower temperatures / currents
- More linear response could still be reached
- Try to do all optics with mirrors only

May 29 2014

P. Hurh

Target Facility Challenges

00.00		
08:00	Practical Experiences from Remote Handling in Fusion	Dr. Alan ROLFE
	Wilson Hall - One West	08:00 - 08:40
	The IFMIF/EVEDA Target Facility Design – From CDR to IIEDR	Dr. Friedrich GROESCHEL
09:00	Wilson Hall - One West	08:40 - 09:10
	The remote handling maintenance process of IFMIF target assembly	Dr. Gioacchino MICCICHè 📄
	Wilson Hall - One West	09:10 - 09:40
	Activated Waste Reduction and Design for Remote Maintenance	Mr. Richard BENNETT
	Activated waste Reduction and Design for Remote Maintenance	Mr. Richard DENINETT
10:00	Wilson Hall - One West	09:40 - 10:10
	Discussion on remote handling	Dr. Roberto LOSITO et al.
	Wilson Hall - One West	10:10 - 10:20
	Coffee Break	
	Wilson Hall - Atrium	10:20 - 10:40
	Handling ESH Issues of a Water-cooled Proton Beam-on-Liquid Lithium Stripper Film Experiment	Yoichi MOMOZAKI 🗎
11:00	Wilson Hall - One West	10:40 - 11:10
	NuMI Target Hall Reconfiguration for NOvA	Mr. Salman TARIQ 🗎
	Wilson Hall - One West	11:10 - 11:40
	Target chase: Pros and Cons of different technical solutions	Dr. Marco CALVIANI 🗎
12:00	Wilson Hall - One West	11:40 - 12:10
	Discussion on Target facilities challenges	Mr. Katsuhiro HAGA et al.
	Wilson Hall - One West	12:10 - 12:20

5th High Power Target Workshop https://indico.fnal.gov/conferenceDisplay.py?confld=7870

Target enclosures: pro & cons of various solution

Brainstorming session

M. Calviani (CERN)

With major contributions from: J. Hylen (FNAL), T. Ishida & T2K team (KEK/J-PARC), H. Vincke, C. Strabel, P. Vojtyla (CERN)

Helium Vessel Construction

For HPTW

Calviani Talk (Fri 11:40)

Posters interesting to MAP?

- Uniform irradiation of an extended target by high power beam.
 - Dr. TSOUPAS, Nicholaos
- CENF target thermo-mechanical study
 - Ms. VENTURI, Valentina
- Beryllium material tests: HiRadMat windows and NOvA fins
 - ATHERTON, Andrew
 - Dr. AMMIGAN, Kavin
 - HARTSELL, Brian
- LBNE 1.2MW Target Conceptual Design
 - HARTSELL, Brian

- A High-Power Target system for the Production of Intense Muon Beams
 - Prof. MCDONALD, Kirk
- PNNL Beam Window and Target Analyses
 - Mr. GATES, Robert
- Radiological Calculations on the LBNE Neutrino Beamline
 - Dr. REITZNER, Diane
- Tritium Mitigation for the LBNE Beamline
 - Dr. REITZNER, Diane
- Design and test of a graphite target system for in-flight fragment separator
 - Dr. KIM, Jong-Won

- More radiation damage data is needed
 - Need to coordinate testing activities
 - Generate common database
 - "Standardize" techniques and parameters to validate comparisons
 - across irradiation types (energy, dose rate, temperature)
 - across testing techniques (micro-, mini-, macro-mechanics)
 - RaDIATE Collaboration may fill this need
- Need to move toward unified design standard for target component and system design incorporating radiation damage effects
 - Similar to RCC-MRx code (French nuclear power code)

- Facilities need to include flexibility to perform PIE (Post-Irradiation Examination) on components in order to gain the most benefit for targetry component lifetimes
- MC codes that calculate DPA should be more explicit:
 - Recoil atom energies
 - DPA (standard) ASTM NRT calculation with fixed displacement efficiency (0.8)
 - DPA (physical) NRT calculation with energy dependent displacement efficiency
 - Complete descriptions of origins of key parameters, such as displacement threshold energy (measurement, estimate, calculation)
- Computational capabilities are now at the point that MC simulation codes can start to work with Molecular Dynamics codes to predict radiation damage effects

May 29 2014

- Compared to the accelerator upstream, no target station appears to have a comprehensive instrumentation suite
 - More extensive thermal instrumentation
 - Improved beam profile and position monitoring
 - More robust inputs to target protection system (rastering example)
 - More...
- Limited collaboration between target facilities on instrumentation and across broader community
 - Significant opportunity here

Directions (in no particular order) (4)

HPTW Conclusions and Future

■ Remote Handling:

- Embed into design to save money/time
- Recovery from accidental situation is about 80% of design time
- If components designed completely for RH, then operations take the same time or less then with human
 - If not, 5 to 10 times more!
- Simplify design
- Code of practice?
- Environmental issues
 - Reduce waste
 - Try to declassify waste as much as you can (volume reduce, store to decay)
 - Tritium confinement
 - Creation and migration needs simulations and benchmarking
 - Handle short lived isotopes
 - Air handling needs to provide for decay time
 - Flexibility necessary to solve early problems (but costly)
 - He, air or vacuum?
 - Depends on specific layout of facilities and local legislation

My general observations

- Trend toward optimizing solid targets before making the leap to liquid metal targets (lithium being the exception)
- Trend to staging beam power upgrades
- Recognition of experts globally that successful construction and operation of HPT facilities demands development of HPT as a core institutional competency (infrastructure, experience, development)
 - Need to instill that viewpoint in management (Laboratory Directorates) and funding agencies (DOE)
- The HPT community is strong, vibrant and growing!

1st Annual Collaboration Meeting Welcome and News & Notes

May 19 2014

http://www-radiate.fnal.gov/

Radiation Damage In Accelerator Target Environments

Next Stop: Oxford! (HPTW 2016 at RAL)

