
Description

IFMIF: accelerator-based D-Li neutron source

- production of an intense flux of high energy neutrons
- sufficient irradiation volume for realistic testing of materials and components up to about a full lifetime of their anticipated use in DEMO and beyond.
- Must survive exposure to damage from neutrons with energy spectrum peaked near 14 MeV with annual doses of ~20 dpa (displacement per atoms), and total fluences of ~200 dpa.

	•
Neutron Flux	$\geq 2 \text{ MW/m}^2 \text{ (@ 500 cm}^3 \text{)}$
Operation Availability	70 %
D+ Beam Current	250 mA (CW, 2 x 125 mA)
D+ Energy	40 MeV
D+ Beam Size	200 mm (width) x 50 mm (height)
Li Jet Thickness	19, 25 mm (resp. for 32, 40 MeV D+)
Li Jet Width	260 mm
Li Jet Velocity	10-20 m/s

IFMIF SCHEMATIC LAYOUT

online/year 70%		
Total (product)	80.7%	
Central CS	99.5	
Conventional	99.5%	
Accelerator	88.0%	
Target facility	95.0%	
Test facility	97.5%	