MERcury Intense Target (MERIT) Experiment – or nTOF-11

Mercury fountain, Funtació Juan Miró, Barcelona - Spain

Mercury System Safety Review

> <u>Ilias Efthymiopoulos</u> <u>Adrian Fabich</u> (CERN - AB-ATB-EA)

> > Hg-system Safety Review CERN – June 19, 2006

Mercury System Safety Review

Review Panel

Mercury experts & Chemical Safety:

- Friedrich Groeschel (PSI)
- Bernie Riemer (ORNL)
- Jonathan Gulley (CERN/SC)

Radiation protection (CERN-SC/RP):

- Marco Silari
- Thomas Otto
- Pierre Carbonez

Mechanical safety (CERN-SC/GS):

- Benoit Delille
- Andrea Astone

Fire protection (CERN-SC/GS):

Fabio Corsanego

General Safety:

- Bruno Pichler (CERN-SC/GS)
- Ralf Trant (CERN-SC/GS)

Chairman:

Ghislain Roy (CERN-AB/DSO)

Thank you all for accepting the invitation!

Mercury System Safety Review

Agenda

I. Efthymiopoul

http://indico.cern.ch/conferenceDisplay.py?confld=1785

Rase-	"MERIT safety review of the mercury system"	Monday 19 June 2006 from 09:00 to 17:00 at CERN (SALLE B (61-1-009))
escription	The design, construction, operation, transport & decommissioni	ng of the mercury loop system will be reviewed.
		Monday 19 June 2006
londa	y 19 June 2006	top↑
09:00	Introduction (15') presentation	Ilias Efthymiopoulos (CERN)
09:15	Discussion (15')	
09:30	Layout and construction of the Hg system (30') (Sides) presentation	Van Graves (<i>ORNL</i>)
10:00	Discussion (30')	
10:30	break	
11:00	Operation and handling (30') (Slides) presentation	Phil Spampinato (ORNL)
11:30	Discussion (30')	
12:15	lunch ()	
13:30	Transport and decomissioning (30') (Sides) presentation	Van Graves (ORNL)
14:00	Discussion (30')	
14:30	Closed session (1h00')	review panel
15:30	coffee	
16:00	Discussion - feedback (1h00')	

Mercury System Safety Review

Scope

Review the **Hg-system** for the experiment

- 1. Overall design & operation foreseen at CERN
- 2. Mechanical construction
- 3. Production & safety tests at production
- 4. Tests foreseen before and after delivery at CERN
- What is **NOT included**:
 - the MERIT experiment, cryogenics, radiation, access, ...

Goal

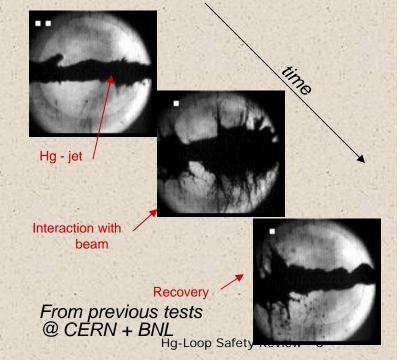
Produce a summary report with comments and recommendations to be followed up

- Important intermediate path to final approval of the installation at CERN
- Final inspection in situ
- I leave it up to the chairman to define the dates...

The MERIT Experiment

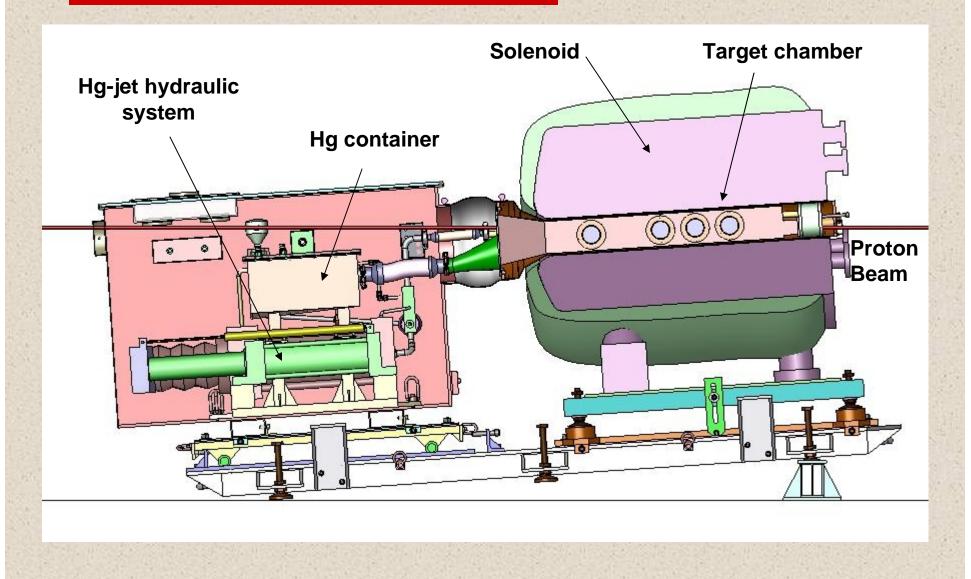
Introduction

few words about the experiment, and the safety aspects...

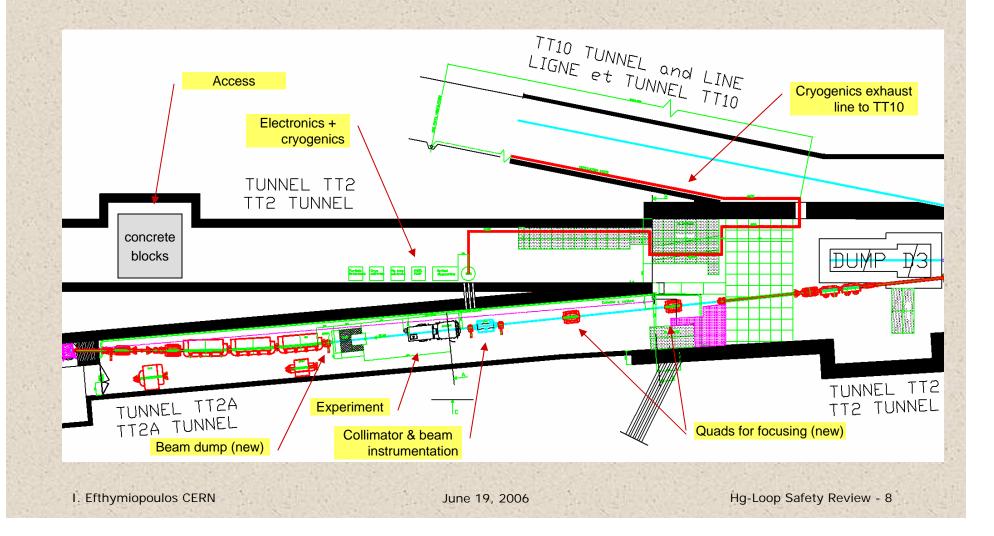

The MERIT Experiment (1/3)

We propose to perform a **proof-of-principle test of a target station** suitable for a Neutrino Factory or Muon Collider source using a 24-GeV proton beam incident on a target consisting of a **free mercury jet** that is inside a **15-T capture solenoid magnet**.

Proposal submitted to INTC – May 2004 Experiment approved as nTOF-11 → MERIT


Target

- 1-cm diameter Hg jet, $v \cong 20$ m/s
- PS Proton beam: 24 GeV/c
 - Max. 3×10^{13} protons/pulse,
 - Pulse length 0.5÷2 μsec
 - ~100 (HI) pulses in total
 - Total limit: 3×10^{15} protons on target
- Meson collection using a 15-T solenoid


June 19, 2006

The MERIT Experiment (2/3)

The MERIT Experiment (3/3)

- □ To be installed in the **TT2A tunnel** upstream of the nTOF target
- **Data taking**: "two-weeks" at the PS startup in 2007

MERIT Experiment Milestones (1/1)

Magnet testing at MIT	March - June 2006 🗸
Hg loop and nozzle tests at Princeton	Oct – Dec 2005 🗸
Hg target loop system test at ORNL	June –July 2006 🦕
Integration tests at MIT	Aug – Sept 2006
Shipment to CERN	Nov - Dec 2006
Installation preparation at CERN	Shutdown 2005-2006: basic infrastructure Shutdown 2006-2007: experiment setup
Experiment – data taking	PS startup in 2007 (April?)

Safety issues (1/3)

How safety is handled for MERIT:

- Preliminary hearings with safety officials at CERN before the proposal submission and approval of the experiment
 - 2. Safety reviews of the major sub-systems of the experiment, in time with their production
 - Cryostat and cryogenics February 3, 2006
 - □ Hg-system June 20, 2006
 - 3. Safety inspection of the final installation in situ
 - Transport, installation
 - Access & interlocks system verification

Safety issues (2/3)

- So far several aspects related to the safety of the experiment have been discussed with SC experts
- No show-stopper was found
- Memos on each subject available
 - <u>http://proj-hiptarget.web.cern.ch</u> (see also EDMS MERIT experiment)
- Safety structure of the experiment defined ISIEC form
 GLIMOS: Adrian Fabich

Our primary objective remains to prepare and perform a successful and <u>safe</u> experiment

Safety issues (3/3)

						EDMS # 383
	O CER	N — European Or	contration for N	uclear Desearch		
	MA CEN					
		1 3				
INIT	IAL SAFETY	INFORMAT	FION ON E	XPERIMEN	TS AT CEF	RN
DATE:	January 20	006		EXPERIMENT:	MERIT	(ntof11)
INSTALLATIO	N START:	February 2		AREA/BEAM:	TT2A (FTN), T	. ,
SPOKESMAN GLIMOS :	Harold G. Kirk Adrian Fabich	(BNL), Kirk McDor	nald (Princeton	University) TEL:	160345	
FILLED IN BY	Adrian Fabich			TEL:	160345	
(1) TEST BEAN		FTN line		-		
	IS: ERN (BLDG/ROC		TT2A (FTN)	, TT2, TT10, ISR		
	, , , , , , , , , , , , , , , , , , , ,	, 				
(Z) GASES, LIG	QUIDS, CRYOLIQ (u:	oids sed in detectors	or kept in near	by containers}		
	Device Type	Fluid 1 + % I	Fluid 2 etc.	Volume	Abs. Press.	Max Flow
	cryogenics hydr. fluid	LN2 not flammable		6000 liter ~30 liter	15 bar 206 bar	200 q/s ~30 m/s
	Hg loop	mercury		25 liter	206 bar 100 bar	~30 m/s 200 g/s
	ngloop	mercury		25 inter	Too bai	200 g/3
	see above, no flammable ga			s, solvents, additi		
4) ELECTRICI	ΙY					
	Magnet type	Power	Field	Gap Vol.	Max.wate	
MAGNETS:	BNL solenoid	5 MW	15 T pulsed	15 cm bore, 1m	80 K cryogenic	, 15 bar
High	Detector Type	Voltage	Current	Stored Energy	No of HV Channels	Remote Shut-off?
Voltage	scintillator	???	117	777		
(> 1 KV)	not yet known	777	777	777		
	CUIT current > 5		-		NO	
POWER dis	sipated by all ele	,	on detectors: off detectors		ble	
SPECIAL G	ROUNDING REQ		n.a.		615-	
			4/0			
			1/2			

EDMS # 383772

(5) LIFTING AND HANDLING

Weight of heaviest single piece to install ?	BNL solenoid with baseplate, ~5.5 tons
Specially designed handling equipment?	CERN standards: 170 ton crane, turtle, jacks
For which max. weight? se	ee above

(6) VACUUM TANK, PRESSURE TANK, CRYO TANK

lank	Abs. pressure	Volume	Weakest part(s) of wall
LN2 dewar	2 bar	6000 liter	standard equipement
cryostat	15 bar	120 liter	(with supply lines)
Hgloop	200 bar	open system	beam windows

(/) IONIZING RADIATION

Beam intensity, radioact. Sources, depleted uranium, etc.

PS proton beam, 24 GeV/c, 4*10^13 protons/pulse, see also EDMS 626963

(8) NON-IONIZING RADIATION

	DETAILS (e.g. class of laser, origin of UV light, average power of microwaves or RF, pulsed or CW,
LASER 1	class4, 808 nm, 30 W peak, 150 ns pulse, 1 MHz (2 systems)
LASER 2	class4, 850 nm, 1 W peak, micro-sec pulse at kHz (2 systems)
UV LIGHT	not applicable
microwaves, RF	not applicable

(9) OTHER HAZARDS (or remarks):

ODH, fire, access, interlocks ...

see memos at EDMS 626963, 697850, 697857, 697860

(10) RISK ANALYSIS

ODH not yet done, see also above

PLEASE RETURN THIS FORM TO THE DSO OF THE PH DEPARTMENT

2/2