Secondary Particle Flux Detectors for the MERIT Experiment

Outline

- What we want to measure
- Experiment layout
- Error sources
- Detector possibilities

Ilias Efthymiopoulos, Adrian Fabich, Maurice Haguenauer

> VRVS - Meeting April 5, 2006

What we want to measure

Questions to answer :

□ Is there any particle yield reduction at high beam intensities?

- Simulate high intensities with pump/probe method
- □ Is there any cavitation developed that reduces the effective target length?
 - We know that cavitation occurs but how it develops in a 15T magnetic field?
 - The times involved are "slow", c~1.5km/sec not

Target parameters - reminder:

- **1**-cm diameter Hg jet, $v \cong 20$ m/s
- Pump-probe method to simulate target excitation and 50 Hz operation as in v-fact
- Proton beam:
 - 24 GeV/c from the PS (single turn)
 - \Box 14 GeV/c (multiple turns, $\Delta t > 1$ us)
 - Bunch length:
 - □ 50ns (base), spaced every 131ns

5*10¹² protons

PUMP: 6 bunches.

The Experimental Layout

MERIT - Particle Detection System

Strategy

- No need to measure sub-bunch structure, i.e. integrate answer for each bunch
- **Relative** measurement between bunches
 - i.e. compare 6 measurements (pump) to two measurements (probe)
- Aim to an overall precision of few %
 - 5% should be possible, even 10% would be sufficient as answer

Detector requirements and constraints

- □ Integrate particle counting within 60 ns (50ns pulse + margin)
- Readout within 60 ns or storage (memory)
- □ High particle fluxes : ~10⁷ particles/cm²/bunch
- Radiation
- Magnetic field

MERIT - Particle Detection System

Measurement precision:

Relative measurement between bunches \rightarrow two sources of error

- 1. The knowledge of the beam
 - Beam intensity (bunch-to-bunch)
 - \square Beam direction ({x, y} at target, angle)
 - Beam longitudinal length (bunch shape, out of bunch particles)

2. The precision of our detectors

- Number of particles to integrate, S/N
- Stability over time
- Acceptance vs target configuration

Input beam definition

Intensity measurement - Bunch-Current-Transformers (BCTs)

- 1. Inside the PS ring just before extraction
 - possible to measure bunch per bunch ; 2-5% precision can be achieved
- 2. At TT2 transfer line, right after extraction
 - measure total intensity of the extracted beam

Measurement error:

- BCT precision, assuming same losses for pump and probe bunches in the TT2 line
 - Calibrate the two BCTs using a single turn extraction at 14 and 24 GeV/c
- Kicker current setting would contribute for multiple turn extraction
 - Could be measured/corrected afterwards
 - Test of kicker repeatability during 2006 MDs ???
 - Beam simulations:
 - particle losses in TT2 vs kicker setting
 - beam location at the MERIT target vs kicker setting

I. Efthymiopoulos - CERN

Input beam definition

Beam spot and angle measurement

- 1. Use beam profile monitors installed upstream of the experiment
 - Baseline: MTV screens
 - <1mm precision</p>
 - 3 m distance → 160micro-rad precision
 - Provide {x,y} location
 - □ Alignment: <0.3mm relative between target and MTVs (6 m)

Alternative option:

BPMs of LHC

Longitudinal bunch shape

- Measured online inside the PS ring
- Gives also the number of particles out of bunch (<% effect)

All measurement data can be fetched from the PS control system logs

Particle fluxes

MARS simulation results

Detector locations:

- at large angle around Z=0 cm
- at large angle downstream
 - Cherenkov signal of fast protons
 - Small detectors

scintillators or silicon diodes

Behind the dump in straight line

Muon detector (scintillato)

- Particle fluxes:
 - ~10⁷ particles/cm²/10¹²pot
 - 3×3 cm² detector
 - \rightarrow 10⁸ particles /bunch

Fluxes of charged particle per pulse. $3 \cdot 10^{13}$ proton in pulse. S.Striganov – 18.10.2005

I. Efthymiopoulos - CERN

The Experimental Layout

