HIGH RADIATION TO MATERIALS — HIRADMAT@SPS A NEW IRRADIATION FACILITY AT CERN FOR MATERIAL TESTING

Ilias Efthymiopoulos, CERN

4th HPTWorkshop - Malmoe , May 6, 2011

- Motivation for making the facility
- Layout and beam parameters
- Construction challenges
 - WANF Dismantling
- Doing experiments in HiRadMat
- Project Status
- Summary

The HiRadMat Facility - Motivation

- Facility designed, to study the impact of intense pulsed beams on materials
 - Thermal management (heating)
 - material damage even below the melting point
 - material vaporization (extreme conditions)
 - Radiation damage to materials
 - Thermal shock beam induced pressure waves
- Test bed, important for the design validation of LHC near beam components before installation in the ring
 - An alternative to ad-hoc pirate installations for such tests as done so far
- ▶ **Targeted users**: LHC collimators, R&D on materials, high-power targetry, test of vacuum components (beam windows, coating), others?

Possible HiRadMat experiments

Targetry: High-intensity beam on a solid target (Ta)

MERIT experiment: Highintensity beam on a liquid Hg-target

Material studies: Highintensity beam on a bulck material – plasma formation

LHC collimator: Displacement analysis – 500kW load case for 10s
Loss rate 4x10¹¹ p/s (Beam Lifetime 12min)

Courtesy: R.Assmann, CERN

HiRadMat - Layout

May 6, 2011

(plasma wakefield test beam)

May 6, 2011

May 6, 2011

HiRadMat Beam Parameters

▶ LHC type beam extracted from SPS, protons or ions

	Protons	Heavy ions (Pb82+)
Beam Energy	440 [GeV]	173 [GeV/u], 36.1 [TeV/ions]
Pulse energy	up to 3.4 [MJ]	up to 21 kJ
Bunch intensity	$3 \times 10^9 \text{ to } 1.7 \times 10^{11} \text{ ions}$	$3 \times 10^7 \text{ to } 7 \times 10^7 \text{ [ions]}$
Number of bunches	1 to 288	52
Bunch length	11.24 [cm]	11.24 [cm]
Bunch spacing	25, 50, 75 or 150 [ns]	100 [ns]
Pulse length	7.2 [μs]	5.2 [μs]
Beam spot at the experiment	variable around 1 [mm ²]	variable around 1 [mm²]

- Intensity:
 - ▶ 10¹⁵ protons/experiment (max 100 high-intensity pulses)
 - ▶ 10 experiments/year 10¹6 protons in total/year

HiRadMat Beam Parameters

- **Constraint**: the beam must be >0.5mm in [x, y] at the last beam window of the line and at the dump
- Larger beam sizes can be achieved, <2mm</p>

May 6, 2011

ie-4HPTW, Malmoe

11

HiRadMat Construction - T1 target dismantling

May 6, 2011

Challenges:

- Work in radioactive environment
 - careful dose planning, protection measures
- Contamination risk (dust, radioactive water, rust)
 - help of specialized external company

- The WANF beam was stopped in 1998
- Then the tunnel was closed and the ventilation stopped

May 6, 2011

ie-4HPTW, Malmoe

14

Remote manipulation with the overhead crane

- The removal of the downstream collimator was the most challenging part of the whole project
 - Very radioactive element (~1Sv/h!!!)
 - 4 Cu blocks, no remote handling

Upstream and downstream collimators

May 6, 2011

- Interface platform allows experiment assembly outside the irradiation area
 - Access (time) limitations due to LHC operation
 - Access limitations due to radiation

First step: surface lab

- Experiment assembly on the interface platform
- Alignment using reference installation
 - copy of the installation in the tunnel \rightarrow 0.1mm precision
- Readout / movement tests

Life cycle of an experiment:

- Prepare 1(2) test setups each on is platform in the lab or assembly area
- Move them to the irradiation area do the irradiations; swap between the two remotely (either base platform movement or object)
- Move them to the cool-down area
- Recuperate them later for post-irradiation inspection/analysis in the lab

Friday, May 6, 2011

- Beam parameters to vary for the experiments:
 - Bunch intensity: $[5\times109(pilot) \div 1.1(1.7)\times1011]$ ppb
 - Number of bunches : [1 (pilot) ÷ 288 (bunch trains)]
 - ▶ Timing between bunches or bunch trains: [SPS filling modes possibilities]
 - \blacktriangleright Beam focusing at the experiment : [0.25 \div 4.0] mm2
- HiRadMat beam control
 - Each beam pulse will be on request : single (next sc) or multiple (next 5 sc)
- Beam interlock:
 - During extraction to TI2/LHC access to TJ7/TNC will be prohibited
 - During extraction to TI2/HRM access to TJ7/TNC will be prohibited
 - new beam dump in TI2 to allow access to LHC while HRM receives beam
 - during tests/beam setup the beam is dumped in the HRM dump (ex. T9 target) –
 experiments retracted

- Activation dose near (average at 40cm) test object after 1 hour/1 week cool-down
 - ▶ Short SPS cycle, 1.98E12 p/s for 504 s (1e15 protons)
 - The beam hits the carbon jaw of a typical collimator

May 6, 2011

Remnant radiation

- ► Assumption: 10¹⁶ protons over 1 year on a 15cm long copper test sample
- The sample is removed after irradiation
- Background dose rate in TNC after 1 day / 1 month

May 6, 2011

HiRadMat @ SPS - Transnational Access

HiRadMat is registered as TA within EUCARD

- Funds available to support EU users for the exploitation of the facility
 - Details and application form in : http://eucard.web.cern.ch/EuCARD/activities/access/
 - ▶ 12 applications received so far for 2011!!!

User Selection Panel

- Mandate:
 - Evaluate the scientific merit of the proposed experiments
 - Discuss safety or other operational issues
 - Distribute the yearly beam time and EU funds

May 6, 2011

ie-4HPTW, Malmoe

22

HiRadMat @ SPS - Infrastructure

- We aim at providing to the users:
 - the interface table
 - "standard" cabling from the test area to the surface control room
 - each test stand will be equipped with 5 plug-in connectors
 - signal, power (DC and 220V), HV, cables available
 - others could be added if needed
 - technical support for their installation and operation at CERN
- We are now looking at the possibilities for permanent instrumentation in the facility
 - Buy instruments (cameras, LDV, acoustic installation, etc.) within the available budget
 - Gain experience with the first tests
 - Try to re-use equipment (eg. sample holder) and share knowledge between users
 - We've submitted a request to EC for funding to complete the instrumentation of the facility - in the pipeline....

HiRadMat - Project Status

- The project is well on track
- The proton beam line is completed and tested without beam
- Further tests with low intensity pulses foreseen for w19, 20 (next week!)
- Formal approval for the facility expected in early June'11
- We are now focusing on the experimental area and discussions with the first users
 - Ready for scheduled users from week 26 on
- Possible windows for installation and first tests in 2011 for w26, w32, w39

- HiRadMat is a new facility to allow testing of materials on beam impact in a scientific manner, going away from ad-hoc installations
- The facility offers a very powerful beam from SPS with sufficient flexibility to adjust it for several applications
- The project is well on track, with the possibility for first users in autumn 2011
- Doing experiments in HiRadMat would be very interesting, lots of physics questions to answer, but also very challenging
- Stay tuned in : http://cern.ch/hiradmat

May 6, 2011 ie-4HPTW, Malmoe

25