

EURISOL DS PROJECT

Task#2: MULTI-MW TARGET DESIGN

Y. Kadi On behalf of the EURISOL-DS Collaboration

European Organization for Nuclear Research, CERN CH-1211 Geneva 23, SWITZERLAND yacine.kadi@cern.ch

Project supported by the European Commission under the FP6 "Research Infrastructure Action- Structuring the European Research Area" EURISOL-DS Project Contract no. 515768 RIDS

EURISOL Target Stations

EURISOL shall deliver beams 3 orders of magnitude higher intensity than in presently operating facilities.

Parameter	Symbol	Units	Nval	Range	Hg jet (1 on diam.)
Converter Target material	Z _{conv}	-	Hg (liquid)	LBE	Protoss
Secondary Target material	Z _{targ}	-	UC _x , BeO		Valve d
Beam particles	Zbeam	-	Proton		Observation Box 7 Hg-jet target
Beam particle energy	Ebeam	GeV	1	2	
Beam current	Ibeam	mA	4	2 - 5	
Beam time structure	-	-	CW	50Hz 1ms pulse	Protoss - Office States - Basel pipe
Gaussian beam geometry	obeam	mm	15	< 25, parabolic	
Beam power	Pbeam	MW	4	< 5	Hig evacuation *
Converter length	l _{conv}	cm	45	85	- Interchangeable
Converter radius (cylinder)	r _{conv}	cm	8	4 - 15	The originally proposed Hg – jet
Hg temperature	T _{conv}	°C	150 - 200	<< 357	formation
Hg flow rate	Qconv	ton/s	0.1 - 0.2	<< 1	Diameter of jet $10 - 20 \text{ mm}; Q=2.5$
Hg speed	Vconv	m/s	~5	<< 15	1/s; p>50bars!!!
Hg pressure drop	$\Delta \mathbf{P}_1$	bar	1 – 2	< 10	
Hg overpressure	AP ₂	bar	5 – 7	< 10	
UC _x temperature	T _{targ}	°C	2000	500-2500	P Description of the Parison

2nd Oxford-Princeton High-Powered Target Workshop,

November 6, 2008

EURISOL

Design Study

DETAIL OF NOZZU

Y. Kadi

EURISOL

Study

Desig

Deliverables:

Compact Hg-loop with beam widow

Confined transverse film windowless

- 2. Study of an innovative waste management in the liquid Hg-loop e.g. by means of Hg distillation.
- 3. Engineering design and construction of a functional Hg-loop.
- 4. Off-line testing and validation of the thermal hydraulics and fluid dynamics.
- 5. Engineering design of the entire target station and its handling method

PbBi Alternative - Neutron Balance

2nd Oxford-Princeton High-Powered Target Workshop,

5

EURISOL

Study

Desi

PbBi Alternative - Neutron Spectrum Design Study

6

180º Coaxial Bend Target

Basic performances of the target

TM-34-07-05 K.Samec /Design of the EURISOL converter target. – PSI 2007

Parameter	symbol	value	unit	
Liquid compound	Hg	13.5	kgЛ	
Flow rate	φ	172	kg/s	Ab.13 l/s
Entrance temperature	Tim	< 60	С	
Exit temperature	Teur	< 180	С	
		> 150		
Pressure drop	ΔP	< 5	Bar	
Static pressure	Po	< 5	Bar	

Paul Scherrer Institut • 5232 Villigen PSI

PSI. EURISOL converter target. Hg test preparation. Technical meeting. PSI February 7 2008 DS34

2nd Oxford-Princeton High-Powered Target Workshop,

7

Hg converter and secondary fission targets

Task#4 – Fission Target

Task#2 – 3D view of the fission target

EURISOL

Design Study

MAFF Fission Target Integration

2nd Oxford-Princeton High-Powered Target Workshop,

EURISOL

Design Study

Y. Kadi

MAFF Fission Target Integration

Multi-MW facility Layout

Neutron flux (n/cm2/s/MW of beam)

EURISOL

Design Study

Fission density (Fiss/cm3/s/MW of beam) 80 16+18 262018+1215 Vertical direction 10 1e+11 ø O 1⊛⊬10 -6 . **.** . . -10 1e+09 -45 -20 0 402060 80 Beam axis

16

Large RIB production for the proposed neutron-rich isotopes.

Clear advantage in using natural uranium. Possibility of investigating the lower end of the *terra incognita*, e.g. Nd-157, Tb-167

EURISOL

es

Study

 More than one order of magnitude difference
between the free surface
Hg-J (~22 kW/cm³/MW)
and the confined Hg
targets (BLD, ~2
kW/cm³/MW)

 BDL and IS: Beam window suffering important power densities (~1 kW/cm³/MW → extra cooling plus radiation resistant material needed)

• Peak power densities similar to ESS and SNS

SOL

Study

Liquid Hg Loop for tests of target mock-ups and other components

IPUL variant

PSI variant

1 – test section; 2 – Hg loop DN100; 3 – heat exchanger; 4 – flowmeter;

5 – supply tank; 6 –level meter; 7 – electromagnetic pump; 8 – heat exchanger;

9 – vacuum pump; 10 – argon vessel; M1…M3 – pressure meter; P – vacuum

gauge; T1...T4 – thermocouple; V1...V6 – valve; VF

dosing valve;

2nd Oxford-Princeton High-Powered Target Workshop,

EURISOL

Design Study

Existing Hg – loop in Institute of Physics (under reconstruction)(parameters of EMP p=4 bars; Q~12l/s

TASK #2 – Liquid Hg Loop @ IPUL

Transverse Hg – film

а

Modules of transverse film Test chambers injectors

С

InGaSn test loop of transverse film target module

P=3 bar; Q~1.5 l/s

- a with rectangular cell inner structure
- b with round cell inner structure
- c with parallel separator inner structure

2nd Oxford-Princeton High-Powered Target Workshop,

22

Liquid Hg Loop – Transverse Film

b) head of transverse film injector

Fig.19 Experimental unit of transverse film injector 1 -inlet tube; 2-transverse film former; 3- liquid metal distributor; 4- flowmeter; 5- supply tank; 6- outlet tube.

Task#2 – Hg Waste Management (D2)

2nd Oxford-Princeton High-Powered Target Workshop,

EURISOL

Design Study

•Hf and Lu present as an oxide deposit on Hq were removed by contacting the liquid metal with oxide materials with a rough surface:

- •Sintered corundum
- •Molecular sieve
- •Oxides stick to the surface of these materials

7000

6000

5000

4000

3000

2000

counts

Lu-172

Hf-172

2nd Oxford-Princeton High-Powered Target Workshop,

EURISOL

Design Study

before cleaning

Au-194

Lu-173

R. Moormann, Chiriki et al. (FZJ)

EURISOL

Design Study

A schematic layout for liquid Hg-target disposal strategy

Task#2 – Milestone monitoring

No.	Milestones and expected result of this task:	Months due	
M1	Engineering study of the Hg converter		
M1.1	Computation Hg fluid dynamics	7)
M1.2	Study of a possible windowless Hg converter	9	Done
M1.3	Decision on draft design parameters	14	
M2	Innovative waste management in the liquid Hg-loop		
M2.1	Decision on optimum extraction method	29	In progress
M2.2	Full scale implementation of extraction method	39	
M3	Engineering design construction of a functional Hg loop		
M3.1	Overall design and layout of Hg loop	26	1
M3.2	Design and construction of components	26	Finalized
M3.3	Assembly of complete Hg loop with window free jet	36	J
M4	Off line test of thermal and fluid dynamics		
M4.1	Test of Hg loop components	31	
M4.2	Operation of complete Hg loop with window free jet	43	48 Planned
M5	Engineering design of a complete target station)
M5.1	Study of HV platform and services	28	
M5.2	Study of remote handling equipment	36	In progress
M5.3	Overall design of multi-MW target station	44	52 30

Thank you for your attention and to all contributors...