Status of the FAIR pbar Source

FAIR / CERN / FNAL pbar Sources

Increases the pbar yield by \approx 50 %

cycle time 10 s (cooling time in the CR) **overall pbar yield: 5 × 10-6 pbar/p (scaled CERN data) → 1 × 10 7 pbar/s**

FAIR Collector ring will be operated at $h = 1$, CERN ring was operated at $h = 6$

Time needed for stochastic cooling in CR (AC), upgrade possible

pbar Distribution After the Target

From \sim 2.5 \times 10⁻⁴ pbar / (p cm target) \sim 5 \times 10⁻⁶ (or 2 %) are "collectable"

R.P. Duperray et al., Phys. Rev. **D 68**, 094017 (2003)

MARS Simulation of the pbar Distribution After the Target

x [mm]

Collecting pbars: Magnetic Horn

Collecting pbars: Magnetic Horn

MARS Simulation of the pbar Yields

MARS Simulation of the pbar Yields

Æ

Temperature Increase in the Target

ŀТ

FAIR / CERN / FNAL pbar Sources

Increases the pbar yield by \approx 50 %

cycle time 10 s (cooling time in the CR) **overall pbar yield: 5 × 10-6 pbar/p (based on CERN data) 1 10-5 → 2 × 10 7→ 1 × 10 7 pbar/s pbar/s** *scaled CERN data: 1 [×] 10 7 pbar/s*FAIR Collector ring will be operated at $h = 1$, CERN ring was operated at $h = 6$ Time needed for stochastic cooling in CR (AC), upgrade possible

Pulsed Target: FLUKA Simulation

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 4, August 1983

ANTIPROTON PRODUCTION AND COLLECTION FOR THE CERN ANTIPROTON ACCUMULATOR

E. Jones, S. Van der Meer, F. Rohner, J.C. Schnuriger, and T.R. Sherwood CERN Geneva, Switzerland

FLUKA results

 -0.5

 -1

0

5

10

z [cm]

Cu target, $r = 6.5$ mm primary protons homogeneously distributed in a disc with r = 1 mm

20

15

25

 -0.5

 -1

FLUKA results

It is likely that FLUKA overestimates the production cross section. Therefore, the absolute yields might be a factor 2 to high.

 z [mm]

 θ < 100 mrad can be collected

 $I = 1$ MA $(I \sim r^2)$

Distance target center - lens: 100 mm

technically challenging / expensive

20 mrad $\langle \theta \rangle$ = 80 mrad can be collected $I = 0.4 MA$

more simple and reliable, less expensive

Distance target center - lens: 220 mm

ST

F

Li Lens – A P A 36 mm/1.3 MA lens gave a 30% higher yield (with Experimental data from CERN: nominal production beam) compared to a 0.4 MA horn. (with a target optimized for the Li lens)

The Production Target

Target Station

The pbar Separator

Pbar Target Building: Horizontal Cut

Pbar Target Building: Vertical Cut

5 T **ST**

Dose rates around the pbar target

Equivalent dose rates during operation

Equivalent dose rates during operation

Sep57, 2.5e13 ppp, 0.2 Hz, -100cm < x < 100 cm

Equivalent dose rates during operation

Induced Activity after Shut-Down

Induced Activity after Shut-Down

1 week cooling, eqivalent dose rate in Sv/h

Operation on air for 20 m after the target.

pbar losses are about 5 % when He bags are used.

Target Exchange (target on air!)

Target Station

Hot Cell

Life time doses for the magnet coils

١÷

Life time doses for the magnet coils

Dose in HGy per 20 years (50% operation time), narrow quadrupole 1, upstream coils

Dose in MGy per 20 years (50% operation tine), dipole, upstrean coils

Dose in MGy per 20 years (50% operation time), narrow quadrupole 4, upstream coils

Polyimide insulation required

Life time doses for the magnet coils

Table1 Comparison of radiation-resistant service life

Gy(Gray): Radiological dosage when energy applied from radiation to a substance is 1J per kg

Copper sheath Insulator(MgO) Conductor (Oxygen-free copper)

Water-cooling channel (Hollow)

J-PARC::

- 1) Polyimide resin insulation (PI) for up to 100 MGy;
- 2) Mineral insulation magnet cables (MICs) with larger cross sections for higher radiation dose up to 100 GGy.

Approximately 20 polyimide insulation magnets and 10 MIC magnets were designed. The fabrication started in 2005.

The stranded conductors impregnated by the polyimide resin to form the coil

