

Post Irradiation Examination of an Alloy 718 Beam Window

Stuart A. Maloy¹,

Hong Bach², Tarik A. Saleh¹, Tobias J. Romero²,

Osman Anderoglu¹, Bulent H. Sencer³

1. Materials Science and Technology Division -Los Alamos National Laboratory

2. Chemistry Division -Los Alamos National Laboratory

3. Idaho National Laboratory

(May 21, 2014)

• LOS Alamos

Outline

- Isotope Production Facility
- Cutting of Window and Dimensional Measurements
- Calculation of Dose and Irradiation Temperature
- Shear Punch Testing
 - Trepanning of Specimens
 - Dose/Irradiation Temperature vs. Location
 - Shear Punch Testing and Data
- TEM Analysis
- Comparison to previous test results
- Summary

Isotope Production Facility and Beam Window

The proton beam is delivered via a vacuum beam pipe. Inconel 718 beam window isolates the beam pipe (under vacuum) and the target irradiation chamber (15 psig of cooling water).

Present design limit for window is 5 years and would like to increase that limit through analyzing properties after 5 years of operation.

Cutting off the Window

Window was cut from beam tube remotely in the corridor of the CMR Wing 9 hot cells

Then, the window was placed into an individual hot cell for analysis and sample preparation.

Dimensional and Dose Measurements on Window

2PF Bern Wirden Top 14r.

B (gray)

GAFCHROMIC HD-810 dosimetry film was used to measure the absorbed dose of high energy photons from the activated beam window.

Rastered beam profile shows a Gaussian distribution and the highest dose region corresponds to the darkest blue region on the Gafchromic film.

Beam window deformed 1.5mm into the vacuum side.

distance (in.)

Cutting and Shear Punch Testing Plan

Samples Tested Samples Cut but Untested Black Circles were not cut

- Beam profile was superimposed on the window to determine the cutting plan as a function of radiation dose (dpa).
- 3-mm OD samples were cut with a Mill machine. A total of 3 cutting bits were spent to cut out 20 numerical samples (1-20) and 5 alphabetical samples (A, B, C, E, and F).
- Cut-out samples were polished and thinned from on both sides to 0.254 mm thickness.
- The shear punch testing for the following samples were completed as a function of radiation dose (dpa):
 - 2 controls samples of unirradiated Inconel 718
 - 1-6, 8, 9, 10-13, 15-16, 17-18, 19-20, A-C, and E

8

Trepanning 3 mm Diameter Samples from Window

Shear Punch Testing Equipment at CMR Hot Cell

Shear Punch Set-up

Loading sequence

- Performed 25 shear punch tests on 3 mm diameter specimens.
- Tested at initial strain rate of 5 x 10-4/s.
- Tested at in ultra high purity argon.

Control Material Tensile Tests vs Shear Punch

Operated by Los Alamos National Security, LLC for the U.S. Department or Energy's NNSA UNCLASSIFIED | 11

Los Alamos

Shear Punch, Outer to Inner

Comparison of Shear Stress/displacement Curves

Dose = 0.5 dpa

Tirr=50C

0.1

OuterRing

#18

19

20

0.15

0.2

Tirr= 109C

Optical Images of Exit side of Shear Punch Specimens

Inconel 718 Solution Annealedunirradiated

200 mm

Bright field TEM images showing dislocations and some precipitates

Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED | 15

TEM Analysis of Irradiated Alloy 718 Samples

0.5 dpa at 50°C

12.5 dpa at 109°C

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED | 16

Previous Results on Proton Irradiated Annealed 718 SPF

STIP-II Inc718 SPF Tensile Tests 1000 1400 7.8 dpa, Tirr=183C, 7.0 dpa, Tirr=147 C, ~600 appm He ~500 appm He 900 18.7 dpa, Tirr=406 C, 1200 18.4 dpa, Tirr=382C, ~1700 appm He 800 ~1700 appm He Control 1000 700 Effective Shear Strength (MPa) Control 600 800 Stress (MPa) 500 600 400 300 400 200 200 100 0 0 0 5 10 15 20 25 30 35 40 45 50 55 0 0.05 0.1 0.15 0.2 0.25 0.3 Strain (%) Displacement (mm)

- Inconel 718 SPF samples irradiated in STIP-II
- Samples show good retention of ductility even with much higher helium levels

STIP-II Inc 718 SPF Shear Punch Tests

Summary of Tensile Results

- All samples display ductility in both yield vs UTS and optically.
- Samples taken in outer ring and outside collimator have a higher yield and UTS than control or high radiation dose samples.
- Increased hardening appears to be a combination of increased defect density, bubble density and second phase precipitation
- From these results we are confident to push lifetime out to ~17 dpa
- Further analysis required to understand bubble formation in low dose samples.

Comparison to previous tensile results

- Farrell et al. (03) shows increase from 350 MPa to 900 MPa for irradiation at 50-100C for a dose of 1.2 dpa
- STIP-II shows increase from 600 to 1200 MPa at 183C and 600 to 1100 MPa at 382C to doses of 7.8 and 18 dpa respectively
- IPF data shows increase from 450 to 1100 MPa at 9 dpa and 850 MPa at 11-12 dpa. Also an increase to 1100 MPa is observed at 2-4 dpa.

Shear Punch Results Jinost All Middle Range

Effective Shear Strength (MPa)

Around the Outside of Colimator 43 -

Effective Shear Strength (MPa)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED | 21

5 Y

Inconel 718 #5 ~14 dpa @109°C Los Alamos

Irradiation Damage and Replacement

- Beam transmission through the window incurs heating causing thermal stress.
- Beam irradiates the window causing mechanical properties to change.
- Beam window design criteria is 20 dpa (displacement per atom). Beam window reached the end of its life.
- Estimate dose rate is 100 R/hr at contact without shielding and highly contaminated.
- We replaced window in March 2010, stored at Area A and shipped to CMR in November 2010.

Image of Beam Window Surface

Outline of beam collimator is evident on beam window

Approximate dimensions are 10 cm diameter x 0.5 mm thick.

Machined Window

Optical Images of Control Sample #65 Alamos (Unirradiated)

Optical Images of Sample # 8 (High Radiation Ring)

Inconel 718 #19 ~ 0.5 dpa @50°C ^γ ^{" precipitates}

National Nuclear Security Administration

0.5 dpa 50°C

Inconel 718 #5 ~12 dpa @109°C

Inconel 718 #E ~11 dpa @~75°C

Reference: M. Dehmas et al. Advances in Mat. Sci. and Eng (2011)

