

Graphite progress update

BJ Marsden and G Hall

Nuclear Graphite Research Group, School of MACE, The University of Manchester

28 March 2013

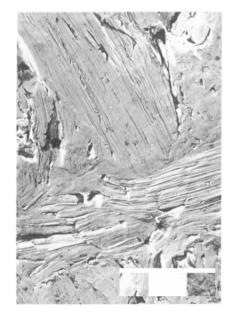
RaDIATE Progress Meeting, May 2013

Introduction

- POCO vs. "nuclear grade" graphite
 - HOPG as an example
- Environment = LBNE
 - 1 dpa
 - ≤300°C
 - non-oxidising environment
- Neutron c.f. proton irradiation
- Continuous c.f. pulsed irradiation
- Some recommendations

POCO vs. "nuclear grade" graphite

- POCO chosen based upon
 - past experience (irradiation stability)
 - grain structure (isotropy)
 - high strength
- Similar (historical) conclusions in fission area
 - used as specimen holders, restraints etc.
 - manufacturing limits \rightarrow restricted usage
- POCO different than nuclear grades
 - ultrafine grain size (1-5 µm *c.f.* ≥10 µm)
 - fine pore structure (0.3-0.8 μ m *c.f.* ≥8 μ m)
 - CTE near perfect (~8 × 10⁻⁶ K⁻¹ *c.f.* ~4 × 10⁻⁶ K⁻¹)

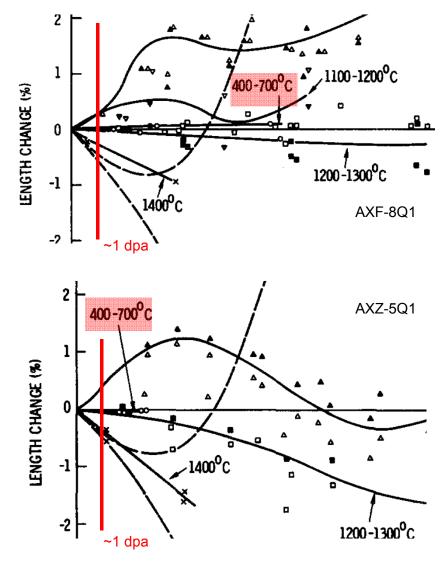


POCO vs. "nuclear grade" graphite

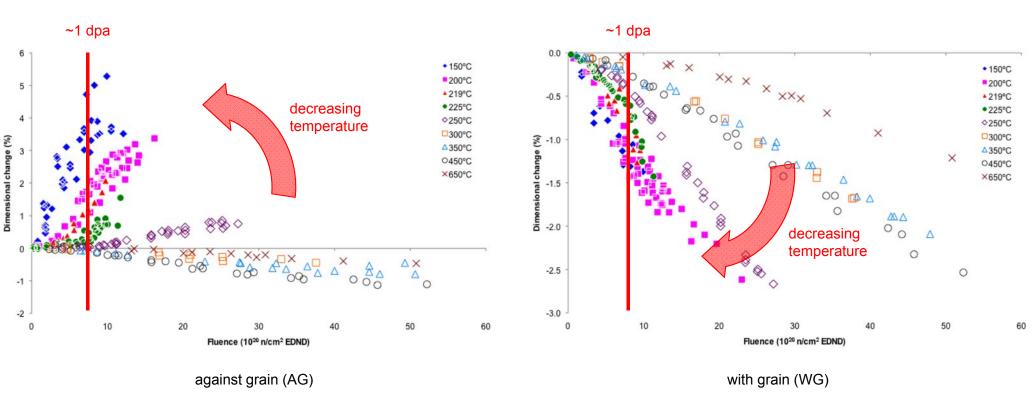
- POCO is probably a sintered material
 - previous differences
 - no visible "binder" phase
 - often no impregnation
- POCO can have a lower graphitisation temperature than standard (2800°C) e.g.
 - AXF-Q1 = 2300°C
 - ZXF-<u>5</u>Q = 2500°C
 - AXF-<u>8</u>Q1 = 2800°C
 - affects properties and irradiation behaviour

POCO AXF-8Q1

EGCR (nuclear grade)

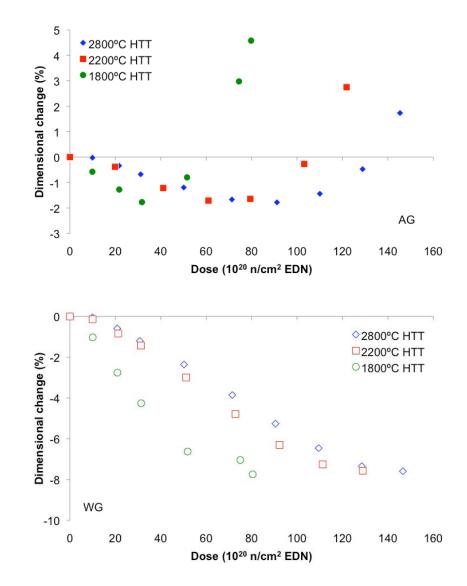

Replica electron micrographs (Pitner, 1971)

Grade	ZXF-5Q	AXF-8Q1	AXZ-5Q	Gilsocarbon	IG-430	IG-110
Comment	candidate	historical experience (fission)	historical experience (fission)	historical experience (fission)	historical experience (fission) & similar to IG-43	historical experience (fission)
Particle size (µm)	1	5	5	500	10	20
Pore size (µm)	0.3	(0.3)	0.7	42	-	16
Density (g/cm³)	1.78	1.80	1.66	1.81	1.82	1.77
Total porosity (% volume)	20	(20)	28	20	19	21
Open porosity (% of total)	80	(80)	90	55	65	58
Graphitisation temperature (°C)	2500	2800	2500	≥2800	≥2800	≥2800



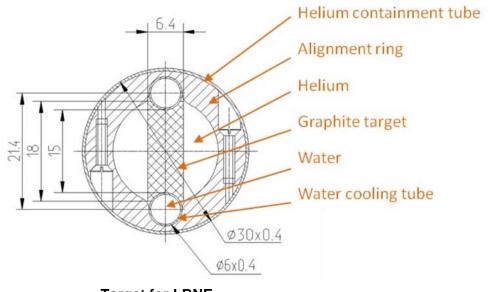
- 400 to 700°C
 - data on POCO grades
 - negligible dimensional changes
 - little data
 - nuclear grades shrink within this range
- ≤300°C
 - no data on POCO grades
 - expect dimensional changes to be greater
 - possibly significant
 - lower temperature = greater the rate of change

Dimensional changes (Pitner, 1971)



Dimensional changes of Pile Grade A (PGA) graphite

- Decrease in graphitisation temperature = increase in dimensional change rate
 - at 1 dpa difference between 2500°C and 2800°C is likely to be negligible



PGA graphitised to various temperatures and irradiated at 600°C (Brocklehurst and Kelly, 1993)

Dimensional change under load

- dimensional changes different due to irradiation creep
 - reduces stresses in graphite components
- target under initial compressive load
 - shrinkage increases when already shrinking (≥300°C)
 - assume expansion decreases when already expanding (<300°C)
- complex interaction in target
 - fluence distribution
 - temperature distribution
 - boundary conditions

Target for LBNE

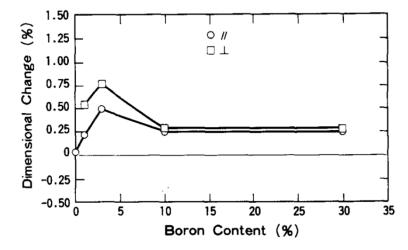
Recommendations

- keep graphite at higher temperatures (~300°C)
- graphitisation at 2500°C should be ok
- conduct stress analysis of target
 - realistic fluence and temperature distributions
- Additional recommendation
 - conduct experiments on POCO at temperatures of interest

Helium production

Usually not considered in fission

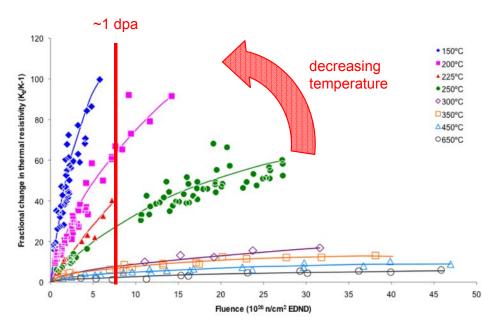
- negligible helium production
- exception when graphite was doped with ¹⁰B
- When helium production is not negligible
 - highly oriented pyrolytic graphite (HOPG) experiences increased dimensional changes and exfoliation/delamination/flaking of layers
 - helium trapped in cavities

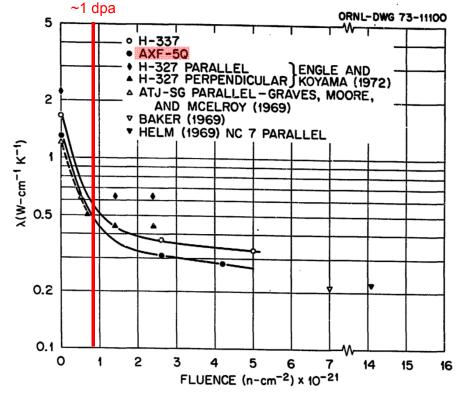


HOPG doped with ¹⁰B and irradiated 650°C (Kelly and Mayer, 1969)

Helium production

- When helium production is not negligible
 - POCO and nuclear grade graphites have significant amounts of open porosity
 - some helium can escape
 - remainder could influence dimensional changes
 - helium effect secondary to effect of boron on nucleation of interstitial loops
- Recommendation
 - conduct further investigations and/or scoping calculations to determine relevance




Dimensional changes of boronised graphite irradiated to 0.13 dpa at 300°C (Maruyama and Harayama, 1992)

Thermal conductivity

- Rapid reduction in thermal conductivity with fluence
 - rate of decrease increases with decreasing temperature

Thermal conductivity of various irradiated graphites (Moore *et al.*, 1973)

Thermal conductivity of PGA irradiated at various temperatures (Birch and Brocklehurst, 1987)