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Accelerator-Driven Spallation Sources

" Produce neutrons for use in condensed matter and basic physics research

= Want neutron wavelengths about the dimensions of interest, or neutron energies
that can probe the dynamics of interest

= The pulsed nature of the neutron beams allows for energy determination by time
of flight (which you can’t do with a reactor source)

— Exception noted for the SINQ source which uses the PSI cyclotron
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What’s Important?

Accelerator parameters

power on target — 7 kW (IPNS) to 1 MW (SNS)

proton energy — 450 MeV (IPNS) to 3 GeV (JSNS)

pulse rate 10 Hz (ISIS TS2) to 25 Hz (JSNS) to 60 Hz (SNS)

pulse length — sub-pus (short pulse), 1-2 ms (long pulse), CW (SINQ)

Neutron economy in target (production, absorption)
Moderator efficiency, coupling to target
Neutron energy spectrum and emission time distribution
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Neutron Production

= A fundamental truth — all
neutrons are born fast

= Neutrons are produced by the
processes of spallation, fission,
and neutron multiplication
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final stage:
residual de-excitation
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How Do We Make Cold Neutrons?

= Cold neutron production at the IPNS

E, =450 MeV

(~25 collisions)

Ep =50 MeV
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Types of Accelerator-Driven Spallation Sources

= Linac + synchrotron (IPNS, ISIS, JPARC)

= Linac + accumulator (compression) ring (SNS, LANSCE, original ESS)
= Cyclotron (SINQ)
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Intense Pulsed Neutron Source (ANL)

= |PNS was the first user-dedicated accelerator-driven neutron source in the world,
commissioned in 1981

= Neutrons were produced by spallation/fission by 450-MeV protons striking
depleted uranium target

*= Proton beam pulsed at 30Hz

= Average current 15 pA
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ISIS

= Accelerator
parameters

— Linac 70 MeV,

200 ps, 50 Hz

— RCS 800 MeV,
50 Hz, 160 kW,
(2) 100 ns
pulses

The ISIS synchrotron accelerates
protons to 84% of the speed of
light then fires them into two

tungsten targets.
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~ Neutrons are released from both
~ targets via spallation. Using
neutrons, scientists can study the
atomic structure of materials and
can even measure the forces
between atoms.

: The second target station is optimised for low
e ; energy neutrons providing greater capacity at ISIS
ENGIN-X - and opening up new areas of research.
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Japan Spallation Neutron Source

= Accelerator parameters
Linac 400 MeV, 500 ps, 50 Hz
RCS 3 GeV, 25 Hz, 1 MW

Pacific Ocean
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Spallation Neutron Source (ORNL)

Front-End Systems Accumulator Ring
(Lawrence Berkeley) (Brookhaven)

Target
(Oak Ridge)

Linac
(Los Alamos and
Jefferson)

Instrument Systems |
(Argonne and Ook Ridge)
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European Spallation Source

Linear accelerator + compression ring (short pulse target station)

Accelerator parameters
- 10 MW
— 1.33 GeV

Short pulse target station
- 5MW
— 14 us
— 50 Hz

Long pulse target station
- 5MW

- 2ms
- 162/3Hz
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What is the Optimum Target Material for Neutron

Production?

*= Higher atomic number targets favor greater neutron production
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What is the Optimum Target Material for Neutron
Production?

= Part of uranium’s advantage comes from fission, part from higher Z
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Neutron Absorption of Candidate Target Materials
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What is the Optimum Energy for Spallation Neutron
Production?

= Examined by Carpenter et al. in Physica B270, 272-279 (1999).

= Discussed the matter in general terms, not as an engineering solution to the
problem

=  Background of discussion is how best to reach high beam power, with high
current or with high energy
= Concludes that higher proton beam energy

— has advantages in potentially lower capital costs, potentially lower operating costs,
and potentially lower beam losses

— probably somewhat relieves radiation damage problems in accelerator and target
beam windows

— has a possibly slight positive affect on target station design
= Superconducting ion accelerators had not been demonstrated to high energies

at the time — warm accelerator forces choice of high current to maximize wall
plug to beam energy efficiency
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What is the Optimum Energy for Spallation Neutron
Production?

= The fraction of proton energy that

goes into producing neutrons E, (GeV) F, I, (MA) |, (MA)
decreases as the proton energy 1 1.0 1.0 1.0
increases
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Target Station - JSNS

= Target building must accommodate target, reflectors, moderators,
beam gates, instruments, biological and instrument shielding, services
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Moderator Coupling to Target

Moderators can be in wing or slab or
flux-trap configurations

Non-symmetric target shape improves
coupling

Best results for target “radius” about
2.5 cm larger than beam “radius”
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Reflectors

= Reflectors are used to keep neutron population in the moderators high

= Decouplers (e.g., cadmium) used to reduce low-energy neutrons entering
moderator (sharpens pulse by reducing long tail of pulse

= |PNS reflectors illustrated

proton | ._
beam \ inner
(graphite)
reflector
outer (Be)
reflector
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Moderators

= Moderators reduce the neutron energy to ~ meV levels
=  High-power moderators are all liquid hydrogen due to heat load, rad damage
= Typical viewed area 10 x 10 cm (IPNS) or 10 x 12 cm (SNS)

H2 O premoderator Premoderator

e layer ‘W
] —

He layer

I Vacuum layer

«— Viewed
surface
q 4 mm (10x10cm’)

Yacuu
layer

He layer
He in vessel
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Moderators

= |nternal poison layers used to sharpen pulse (make moderator appear thinner
for lower-energy neutrons

=  JSNS moderators illustrated

Unpotsoned moderator Poisoned moderator
178" 13.4°

Viewed 1. 25mm)
surfice 138"
{10210 m™")
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What iIs the Best Moderator Material?

= High hydrogen density — high moderating power
= Low neutron absorption
= |nelastic scattering modes in the range 0-10 meV
= Typical choices
— Water
— Methane (liquid or solid)
— Hydrogen
— Advanced materials — mesitylene , benzene, ammonia

= Lack of data on candidate moderator materials is a severely limiting factor in
evaluating new concepts
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Neutron Cross Sections for Moderator Materials
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Neutron Spectral Intensities for IPNS Moderators
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Neutron Pulse Widths for IPNS Moderators
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Neutron Spectral Intensities for SNS Moderators
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Neutron Pulse Widths for SNS Moderators
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A Very Cold Neutron Source

= Many problems at longer length scales and slower time scales can be addressed
using an intense source of longer-wavelength neutrons

fundamental nuclear physics (neutron half-life, EDM)

spin dynamics in magnetic nanostructured materials

the motion of proteins and molecular motors within living cells

hydrogen transport in storage and photoproduction materials

direct-imaging neutron techniques (microscopy, tomography, holography, radiography)

= Present cold neutron sources peak in the range 2-4 A

= The goal of VCNS is an intense peak flux around 20 A and usable flux extending out
to 100 A

= Develop a source providing neutrons at the “lowest practical temperature” -
implies the use of liquid helium as the moderator coolant

= Notional parameters — long pulse, 5-10 Hz

= A VCN moderator is being considered as a supplement to more conventional cold
moderators for the second target station at SNS
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summary

Spallation neutron sources for condensed matter research are complex
interconnected systems

Parameters for accelerator, target, moderators, etc. are dictated by the science to
be conducted at the facility

— Proton pulse repetition rate and pulse width are somewhat narrowly constrained
Pulse rates 5 Hz to 60 Hz, with slower pulsing frequencies used for lower-energy
neutrons
Pulse lengths sub-pus for short-pulse sources or 1-2 ms for long-pulse sources

While no one has yet build a long-pulse source, there continues to be considerable
interest, since they offer the best possibility to utilize > 1 MW of proton beam
power
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